Richard A Neher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8390006/publications.pdf

Version: 2024-02-01

76 papers

10,511 citations

76326 40 h-index 71685 **76** g-index

135 all docs

135
docs citations

135 times ranked 15195 citing authors

#	Article	IF	Citations
1	Evolution, geographic spreading, and demographic distribution of Enterovirus D68. PLoS Pathogens, 2022, 18, e1010515.	4.7	19
2	Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens. Journal of Open Source Software, 2021, 6, 2906.	4.6	129
3	Limited Predictability of Amino Acid Substitutions in Seasonal Influenza Viruses. Molecular Biology and Evolution, 2021, 38, 2767-2777.	8.9	12
4	Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009-2020. Journal of Clinical Virology, 2021, 136, 104754.	3.1	25
5	SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021â€"Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing. Microorganisms, 2021, 9, 677.	3.6	32
6	Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biology, 2021, 19, e3001236.	5.6	200
7	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	13.3	221
8	Molecular Epidemiology and Evolutionary Trajectory of Emerging Echovirus 30, Europe. Emerging Infectious Diseases, 2021, 27, 1616-1626.	4.3	18
9	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	27. 8	363
10	Nextclade: clade assignment, mutation calling and quality control for viral genomes. Journal of Open Source Software, 2021, 6, 3773.	4.6	496
11	Efficient inference, potential, and limitations of site-specific substitution models. Virus Evolution, 2020, 6, veaa066.	4.9	3
12	Cryptic transmission of SARS-CoV-2 in Washington state. Science, 2020, 370, 571-575.	12.6	217
13	Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States. Cell, 2020, 181, 990-996.e5.	28.9	321
14	Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12522-12523.	7.1	68
15	Characterising the epidemic spread of influenza A/H3N2 within a city through phylogenetics. PLoS Pathogens, 2020, 16, e1008984.	4.7	17
16	Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Eurosurveillance, 2020, 25, .	7.0	186
17	2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate – a word of caution. Swiss Medical Weekly, 2020, 150, w20203.	1.6	135
18	Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly, 2020, 150, w20224.	1.6	223

#	Article	IF	CITATIONS
19	COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation. Swiss Medical Weekly, 2020, 150, w20225.	1.6	367
20	Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. ELife, 2020, 9, .	6.0	35
21	Asynchrony between virus diversity and antibody selection limits influenza virus evolution. ELife, 2020, 9, .	6.0	25
22	Evaluation of two workflows for whole genome sequencing-based typing of influenza A viruses. Journal of Virological Methods, 2019, 266, 30-33.	2.1	9
23	Intra- and interpatient evolution of enterovirus D68 analyzed by whole-genome deep sequencing. Virus Evolution, 2019, 5, vez007.	4.9	20
24	Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine, 2019, 41, 479-487.	6.1	37
25	Evolution and rapid spread of a reassortant A(H3N2) virus that predominated the 2017–2018 influenza season. Virus Evolution, 2019, 5, vez046.	4.9	19
26	Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. ELife, 2019, 8, .	6.0	30
27	TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evolution, 2018, 4, vex042.	4.9	883
28	Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends in Microbiology, 2018, 26, 102-118.	7.7	95
29	panX: pan-genome analysis and exploration. Nucleic Acids Research, 2018, 46, e5-e5.	14.5	241
30	Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 2018, 34, 4121-4123.	4.1	2,287
31	Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death. ELife, 2018, 7, .	6.0	12
32	Arabidopsis thaliana and Pseudomonas Pathogens Exhibit Stable Associations over Evolutionary Timescales. Cell Host and Microbe, 2018, 24, 168-179.e4.	11.0	145
33	Colistin susceptibility test evaluation of multiple-resistance-level Pseudomonas aeruginosa isolates generated in a morbidostat device. Journal of Antimicrobial Chemotherapy, 2018, 73, 3368-3374.	3.0	10
34	Real-Time Analysis and Visualization of Pathogen Sequence Data. Journal of Clinical Microbiology, 2018, 56, .	3.9	25
35	Improving the quality and workflow of bacterial genome sequencing and analysis: paving the way for a Switzerland-wide molecular epidemiological surveillance platform. Swiss Medical Weekly, 2018, 148, w14693.	1.6	28
36	Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nature Communications, 2017, 8, 15120.	12.8	96

#	Article	IF	CITATIONS
37	Rapid and Consistent Evolution of Colistin Resistance in Extensively Drug-Resistant Pseudomonas aeruginosa during Morbidostat Culture. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	57
38	Error rates, PCR recombination, and sampling depth in HIV-1 whole genome deep sequencing. Virus Research, 2017, 239, 106-114.	2.2	42
39	<i>In vivo</i> mutation rates and the landscape of fitness costs of HIV-1. Virus Evolution, 2017, 3, vex003.	4.9	85
40	Estimating time of HIV-1 infection from next-generation sequence diversity. PLoS Computational Biology, 2017, 13, e1005775.	3.2	45
41	HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathogens, 2016, 12, e1005964.	4.7	62
42	Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1701-9.	7.1	165
43	Establishment and stability of the latent HIV-1 DNA reservoir. ELife, 2016, 5, .	6.0	119
44	Challenges with Using Primer IDs to Improve Accuracy of Next Generation Sequencing. PLoS ONE, 2015, 10, e0119123.	2.5	27
45	nextflu: real-time tracking of seasonal influenza virus evolution in humans. Bioinformatics, 2015, 31, 3546-3548.	4.1	153
46	Population genomics of intrapatient HIV-1 evolution. ELife, 2015, 4, .	6.0	206
47	Predicting evolution from the shape of genealogical trees. ELife, 2014, 3, .	6.0	159
48	Genetic Diversity in the Interference Selection Limit. PLoS Genetics, 2014, 10, e1004222.	3.5	96
49	Characterization of Genetic Diversity in the Nematode <i>Pristionchus pacificus</i> from Population-Scale Resequencing Data. Genetics, 2014, 196, 1153-1165.	2.9	79
50	Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 195-215.	8.3	161
51	Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P01010.	2.3	38
52	Quantifying Selection against Synonymous Mutations in HIV-1 env Evolution. Journal of Virology, 2013, 87, 11843-11850.	3.4	45
53	Quantifying the range of a lipid phosphate signal in vivo. Journal of Cell Science, 2013, 126, 5453-64.	2.0	9
54	Inferring HIV Escape Rates from Multi-Locus Genotype Data. Frontiers in Immunology, 2013, 4, 252.	4.8	35

#	Article	IF	CITATIONS
55	Coalescence and genetic diversity in sexual populations under selection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15836-15841.	7.1	60
56	Genealogies of rapidly adapting populations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 437-442.	7.1	203
57	Emergence of clones in sexual populations. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P01008.	2.3	16
58	FFPopSim: an efficient forward simulation package for the evolution of large populations. Bioinformatics, 2012, 28, 3332-3333.	4.1	52
59	Fluctuations of Fitness Distributions and the Rate of Muller's Ratchet. Genetics, 2012, 191, 1283-1293.	2.9	63
60	Estimating the Strength of Selective Sweeps from Deep Population Diversity Data. Genetics, 2012, 191, 593-605.	2.9	46
61	Dynamic Mutation–Selection Balance as an Evolutionary Attractor. Genetics, 2012, 191, 1309-1319.	2.9	96
62	Statistical genetics and evolution of quantitative traits. Reviews of Modern Physics, 2011, 83, 1283-1300.	45. 6	87
63	Target search on a dynamic DNA molecule. Physical Review E, 2011, 84, 051911.	2.1	14
64	Genetic Draft and Quasi-Neutrality in Large Facultatively Sexual Populations. Genetics, 2011, 188, 975-996.	2.9	78
65	Correlated Evolution of Nearby Residues in Drosophilid Proteins. PLoS Genetics, 2011, 7, e1001315.	3.5	48
66	Recombination Rate and Selection Strength in HIV Intra-patient Evolution. PLoS Computational Biology, 2010, 6, e1000660.	3.2	154
67	Competition between recombination and epistasis can cause a transition from allele to genotype selection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6866-6871.	7.1	99
68	Blind Source Separation Techniques for the Decomposition of Multiply Labeled Fluorescence Images. Biophysical Journal, 2009, 96, 3791-3800.	0.5	113
69	Topological estimation of percolation thresholds. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P01011.	2.3	50
70	Optimal Flexibility for Conformational Transitions in Macromolecules. Physical Review Letters, 2007, 99, 178101.	7.8	1
71	Force-Induced DNA Slippage. Biophysical Journal, 2007, 92, 2491-2497.	0.5	44
72	Intermediate phase in DNA melting. Physical Review E, 2006, 73, 030902.	2.1	19

RICHARD A NEHER

#	Article	IF	CITATIONS
73	Kinetic Accessibility of Buried DNA Sites in Nucleosomes. Physical Review Letters, 2006, 97, 208102.	7.8	33
74	DNA as a Programmable Viscoelastic Nanoelement. Biophysical Journal, 2005, 89, 3846-3855.	0.5	10
75	Dynamics of Force-Induced DNA Slippage. Physical Review Letters, 2004, 93, 198102.	7.8	18
76	Applying spectral fingerprinting to the analysis of FRET images. Microscopy Research and Technique, 2004, 64, 185-195.	2.2	64