Raul Madariaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389930/publications.pdf Version: 2024-02-01

RALL MADARIACA

#	Article	IF	CITATIONS
1	Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 1976, 66, 639-666.	1.1	1,384
2	Three-Dimensional Dynamic Simulation of the 1992 Landers Earthquake. Science, 1997, 278, 834-838.	6.0	374
3	The 2010 <i>M</i> _w 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science, 2011, 332, 1417-1421.	6.0	345
4	Intense foreshocks and a slow slip event preceded the 2014 Iquique <i>M</i> _w 8.1 earthquake. Science, 2014, 345, 1165-1169.	6.0	328
5	High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophysical Journal International, 1977, 51, 625-651.	1.0	297
6	On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. Journal of Geophysical Research, 1979, 84, 2243-2250.	3.3	216
7	Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Physics of the Earth and Planetary Interiors, 2009, 175, 78-85.	0.7	196
8	A new asymptotic method for the modeling of near-field accelerograms. Bulletin of the Seismological Society of America, 1984, 74, 539-557.	1.1	168
9	Iterative asymptotic inversion in the acoustic approximation. Geophysics, 1992, 57, 1138-1154.	1.4	156
10	Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 2018, 733, 37-56.	0.9	153
11	Modeling dynamic rupture in a 3D earthquake fault model. Bulletin of the Seismological Society of America, 1998, 88, 1182-1197.	1.1	153
12	Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research, 2001, 106, 26467-26482.	3.3	149
13	Two-dimensional asymptotic iterative elastic inversion. Geophysical Journal International, 1992, 108, 575-588.	1.0	146
14	Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Plant Disease, 2013, 97, 379-386.	0.7	134
15	Non-Linear Reflection Tomography. Geophysical Journal International, 1988, 95, 135-147.	1.0	128
16	Dynamic faulting studied by a finite difference method. Bulletin of the Seismological Society of America, 1982, 72, 345-369.	1.1	123
17	Characterization of nucleation during laboratory earthquakes. Geophysical Research Letters, 2013, 40, 5064-5069.	1.5	113
18	From Sub-Rayleigh to Supershear Ruptures During Stick-Slip Experiments on Crustal Rocks. Science, 2013, 340, 1208-1211.	6.0	113

#	Article	IF	CITATIONS
19	Criticality of Rupture Dynamics in 3-D. , 2000, 157, 1981-2001.		105
20	Central Chile Finally Breaks. Science, 2010, 328, 181-182.	6.0	92
21	Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 2009, 175, 86-95.	0.7	90
22	Dynamic rupture processes inferred from laboratory microearthquakes. Journal of Geophysical Research: Solid Earth, 2016, 121, 4343-4365.	1.4	88
23	A seismological study of the 1835 seismic gap in south-central Chile. Physics of the Earth and Planetary Interiors, 2002, 132, 177-195.	0.7	87
24	Fast and Slow Slip Events Emerge Due to Fault Geometrical Complexity. Geophysical Research Letters, 2018, 45, 4809-4819.	1.5	85
25	Numerical study of continental collision: influence of buoyancy forces and an initial stiff inclusion. Geophysical Journal International, 1986, 84, 279-310.	1.0	84
26	The Seismic Sequence of the 16 September 2015 <i>M</i> _w Â8.3 Illapel, Chile, Earthquake. Seismological Research Letters, 2016, 87, 789-799.	0.8	71
27	Background velocity inversion with a genetic algorithm. Geophysical Research Letters, 1993, 20, 93-96.	1.5	70
28	Nucleation Phase and Dynamic Inversion of the <i>M_w</i> 6.9 ValparaÃso 2017 Earthquake in Central Chile. Geophysical Research Letters, 2017, 44, 10,290.	1.5	65
29	The role of a heterogeneous inclusion during continental collision. Physics of the Earth and Planetary Interiors, 1984, 36, 236-259.	0.7	62
30	Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophysical Journal International, 2010, 182, 1411-1430.	1.0	62
31	The Large Chilean Historical Earthquakes of 1647, 1657, 1730, and 1751 from Contemporary Documents. Bulletin of the Seismological Society of America, 2012, 102, 1639-1653.	1.1	59
32	Thrust and extensional faulting under the Chilean coast: 1965, 1971 Aconcagua earthquakes. Geophysical Journal International, 1981, 66, 313-331.	1.0	58
33	Nonlinear velocity inversion by a twoâ€step Monte Carlo method Geophysics, 1994, 59, 577-590.	1.4	58
34	Complex distribution of large thrust and normal fault earthquakes in the Chilean subduction zone. Geophysical Journal International, 1983, 73, 489-505.	1.0	57
35	Modelling of dynamical crack propagation using time-domain boundary integral equations. Wave Motion, 1992, 16, 339-366.	1.0	57
36	Effect of normal stress during rupture propagation along nonplanar faults. Journal of Geophysical Research, 2002, 107, ESE 5-1.	3.3	54

#	Article	IF	CITATIONS
37	Integral equation method for plane crack with arbitrary shape in 3D elastic medium. Bulletin of the Seismological Society of America, 1995, 85, 614-628.	1.1	54
38	The El Salvador earthquakes of January and February 2001: context, characteristics and implications for seismic risk. Soil Dynamics and Earthquake Engineering, 2002, 22, 389-418.	1.9	53
39	Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geoscience, 2016, 9, 380-383.	5.4	52
40	Experimental evidence that thrust earthquake ruptures might open faults. Nature, 2017, 545, 336-339.	13.7	51
41	Ray perturbation theory for interfaces. Geophysical Journal International, 1989, 99, 377-390.	1.0	49
42	Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin (Spain). Marine Geology, 1984, 55, 117-131.	0.9	47
43	Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics. Computational Mechanics, 2000, 25, 613-626.	2.2	44
44	Gaussian beam synthetic seismograms in a vertically varying medium. Geophysical Journal International, 1984, 79, 589-612.	1.0	43
45	Spectral scaling of the aftershocks of the Tocopilla 2007 earthquake in northern Chile. Geophysical Journal International, 2012, 189, 469-480.	1.0	42
46	Dynamic Propagation and Interaction of a Rupture Front on a Planar Fault. , 2000, 157, 1959-1979.		41
47	Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. Journal of Geophysical Research, 2010, 115, .	3.3	35
48	Earthquake dynamics on circular faults: a review 1970–2015. Journal of Seismology, 2016, 20, 1235-1252.	0.6	35
49	Source parameter analysis from strong motion records of the Friuli, Italy, earthquake sequence (1976-1977). Bulletin of the Seismological Society of America, 1987, 77, 1127-1146.	1.1	35
50	Spectral splitting of toroidal-free oscillations due to lateral heterogeneity of the Earth's structure. Journal of Geophysical Research, 1972, 77, 4421-4431.	3.3	34
51	Dynamic modelling of the flat 2-D crack by a semi-analytic BIEM scheme. International Journal for Numerical Methods in Engineering, 2001, 50, 227-251.	1.5	34
52	Constraint of fault parameters inferred from nonplanar fault modeling. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	34
53	Faulting process of the 1990 June 20 Iran earthquake from broadband records. Geophysical Journal International, 1994, 118, 31-46.	1.0	33
54	Diversity of the 2014 Iquique's foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake. Journal of Seismology, 2016, 20, 1059-1073.	0.6	33

#	Article	IF	CITATIONS
55	Determination of the friction law parameters of the Mw 6.7 Michilla earthquake in northern Chile by dynamic inversion. Geophysical Research Letters, 2011, 38, .	1.5	32
56	High-resolution relocation and mechanism of aftershocks of the 2007 Tocopilla (Chile) earthquake. Geophysical Journal International, 2013, 194, 1216-1228.	1.0	32
57	Short-Period Rupture Process of the 2010 M _w 8.8 Maule Earthquake in Chile. Earthquake Spectra, 2012, 28, 1-18.	1.6	31
58	Interseismic strain accumulation in south central Chile from GPS measurements, 1996–1999. Geophysical Research Letters, 2002, 29, 12-1.	1.5	30
59	Reawakening of large earthquakes in south central Chile: The 2016 <i>M</i> _{<i>w</i>} 7.6 Chiloé event. Geophysical Research Letters, 2017, 44, 6633-6640.	1.5	30
60	Evidence for earthquake interaction in central Chile: the July 1997-September 1998 Sequence. Geophysical Research Letters, 2001, 28, 2743-2746.	1.5	29
61	Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones. Physics of the Earth and Planetary Interiors, 2002, 132, 157-175.	0.7	29
62	Origin of Highâ€Frequency Radiation During Laboratory Earthquakes. Geophysical Research Letters, 2019, 46, 3755-3763.	1.5	29
63	Seismic radiation from simple models of earthquakes. Geophysical Monograph Series, 2006, , 223-236.	0.1	28
64	Kinematic and Dynamic Inversion of the 2008 Northern Iwate Earthquake. Bulletin of the Seismological Society of America, 2013, 103, 694-708.	1.1	28
65	3-D seismic reflection tomography on top of the GOCAD depth modeler. Geophysics, 1996, 61, 1499-1510.	1.4	27
66	Which Dynamic Rupture Parameters Can Be Estimated from Strong Ground Motion and Geodetic Data?. Pure and Applied Geophysics, 2004, 161, 2155.	0.8	25
67	Magnitude Scaling of Early-Warning Parameters for the Mw 7.8 Tocopilla, Chile, Earthquake and Its Aftershocks. Bulletin of the Seismological Society of America, 2011, 101, 447-463.	1.1	25
68	A New Digital Accelerograph Network for El Salvador. Seismological Research Letters, 1997, 68, 426-437.	0.8	24
69	An approximate elastic two-dimensional Green's function for a constant-gradient medium. Geophysical Journal International, 2001, 146, 237-248.	1.0	24
70	Seismic Radiation from a Kink on an Antiplane Fault. Bulletin of the Seismological Society of America, 2008, 98, 2291-2302.	1.1	24
71	Identification of High Frequency Pulses from Earthquake Asperities Along Chilean Subduction Zone Using Strong Motion. Pure and Applied Geophysics, 2011, 168, 125-139.	0.8	24
72	High-frequency seismic radiation from a buried circular fault. Geophysical Journal International, 1984, 78, 1-17.	1.0	23

#	Article	IF	CITATIONS
73	Dynamic friction and the origin of the complexity of earthquake sources Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3819-3824.	3.3	22
74	Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake. Journal of Seismology, 1997, 1, 219-235.	0.6	22
75	Can Precursory Moment Release Scale With Earthquake Magnitude? A View From the Laboratory. Geophysical Research Letters, 2019, 46, 12927-12937.	1.5	22
76	Monochromatic body waves excited by great subduction zone earthquakes. Geophysical Research Letters, 1996, 23, 2999-3002.	1.5	21
77	Seismic wave synthesis by Gaussian beam summation: A comparison with finite differences. Geophysics, 1987, 52, 1065-1073.	1.4	20
78	A deep earthquake under South Spain, 8 March 1990. Bulletin of the Seismological Society of America, 1991, 81, 1403-1407.	1.1	20
79	Inversion for the physical parameters that control the source dynamics of the 2004 Parkfield earthquake. Journal of Geophysical Research: Solid Earth, 2014, 119, 7010-7027.	1.4	18
80	Near-Field Spectra of Large Earthquakes. Pure and Applied Geophysics, 2019, 176, 983-1001.	0.8	18
81	A study of the Barisakho, Georgia, earthquake of 1992 October 23 from broad-band surface and body waves. Geophysical Journal International, 1997, 129, 613-623.	1.0	17
82	12 Earthquake dynamics. International Geophysics, 2002, 81, 175-III.	0.6	17
83	Radiation from a Finite Reverse Fault in a Half Space. Pure and Applied Geophysics, 2003, 160, 555-577.	0.8	17
84	<i>P</i> â€Wave Attenuation with Implications for Earthquake Early Warning. Bulletin of the Seismological Society of America, 2016, 106, 13-22.	1.1	17
85	Dynamic inversion of the 2015 Jujuy earthquake and similarity with other intraslab events. Geophysical Journal International, 2017, 209, 866-875.	1.0	17
86	Modelling the tsunami free oscillations in the Marquesas (French Polynesia). Geophysical Journal International, 2013, 193, 1447-1459.	1.0	16
87	Robust features of the source process for the 2004 Parkfield, California, earthquake from strong-motion seismograms. Geophysical Journal International, 2012, , no-no.	1.0	15
88	Low-Frequency 3D Wave Propagation Modeling of the 12 May 2008 Mw 7.9 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2561-2573.	1.1	14
89	Could a 1755-Like Tsunami Reach the French Atlantic Coastline? Constraints from Twentieth Century Observations and Numerical Modeling. Pure and Applied Geophysics, 2013, 170, 1415-1431.	0.8	12
90	How Fast Can We Reliably Estimate the Magnitude of Subduction Earthquakes?. Geophysical Research Letters, 2018, 45, 9633-9641.	1.5	12

#	Article	IF	CITATIONS
91	Dynamic source inversion of the <i>M</i> 6.5 intermediateâ€depth Zumpango earthquake in central Mexico: A parallel genetic algorithm. Journal of Geophysical Research: Solid Earth, 2014, 119, 7768-7785.	1.4	11
92	Kinematics of the 2012 Ahar–Varzaghan complex earthquake doublet (Mw6.5 and Mw6.3). Geophysical Journal International, 2019, 217, 2097-2124.	1.0	10
93	Interplay of seismic and a-seismic deformation during the 2020 sequence of Atacama, Chile. Earth and Planetary Science Letters, 2021, 570, 117081.	1.8	10
94	Analysis and modelling of tsunami-induced tilt for the 2007, MÂ= 7.6, Tocopilla and the 2010, MÂ= 8.8 Maule earthquakes, Chile, from long-base tiltmeter and broadband seismometer records. Geophysical Journal International, 2013, 194, 269-288.	1.0	9
95	The deep Peru 2015 doublet earthquakes. Earth and Planetary Science Letters, 2017, 478, 102-109.	1.8	9
96	The effect of thermal pressurization on dynamic fault branching. Geophysical Journal International, 2014, 196, 1237-1246.	1.0	6
97	The January 2019 (MwÂ6.7) Coquimbo Earthquake: Insights from a Seismic Sequence within the Nazca Plate. Seismological Research Letters, 2019, , .	0.8	6
98	Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake. Scientific Reports, 2021, 11, 2705.	1.6	6
99	The earthquake sequence of November 1987 and March 1988 in the Gulf of Alaska: A new insight. Geophysical Research Letters, 1995, 22, 1029-1032.	1.5	5
100	Singular Elasto-Static Field Near a Fault Kink. Pure and Applied Geophysics, 2011, 168, 2167-2179.	0.8	5
101	GEOPHYSICS: Slippery When Hot. Science, 2007, 316, 842-843.	6.0	4
102	Focal Mechanism, Magnitude, and Finiteâ€Fault Rapid Estimation Using the Elliptical Patch Method in Chile. Seismological Research Letters, 2018, 89, 503-511.	0.8	4
103	Dynamic rupture of subduction earthquakes located near the trench. Earth and Planetary Science Letters, 2021, 562, 116842.	1.8	4
104	Discussion of paper by M. Kumazawa, â€~The elastic constant of polycrystalline rocks and nonelastic behavior inherent to them'. Journal of Geophysical Research, 1970, 75, 2787-2789.	3.3	3
105	La dynamique des tremblements de terre vue à travers le séisme de Landers du 28 juin 1992. Comptes Rendus - Mecanique, 2002, 330, 235-248.	2.1	2
106	Engineering Implications of Source Parameters and 3D Wave Propagation Modeling for the 2004 Parkfield, California, Earthquake. Bulletin of the Seismological Society of America, 2015, 105, 1739-1755.	1.1	2
107	Reply to the comment on "Historical and recent large megathrust earthquakes in Chileâ€. Tectonophysics, 2018, 745, 457-458	0.9	2
108	Preface to the special issue "lmaging Earthquakes― Journal of Seismology, 2016, 20, 1057-1057.	0.6	0

#	Article	IF	CITATIONS
109	Spectrum of strong-motion records for large magnitude Chilean earthquakes. Geophysical Journal International, 2021, 226, 1045-1057.	1.0	0