Muthu kumara gnanasammandhan Jaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389915/publications.pdf

Version: 2024-02-01

22 papers 3,737 citations

430874 18 h-index 19 g-index

22 all docs 22 docs citations

times ranked

22

5571 citing authors

#	Article	IF	CITATIONS
1	In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 2012, 18, 1580-1585.	30.7	1,299
2	Small Upconverting Fluorescent Nanoparticles for Biomedical Applications. Small, 2010, 6, 2781-2795.	10.0	502
3	Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8483-8488.	7.1	346
4	Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chemical Society Reviews, 2015, 44, 1449-1478.	38.1	331
5	Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 2012, 4, 5132.	5.6	250
6	Optical imaging-guided cancer therapy with fluorescent nanoparticles. Journal of the Royal Society Interface, 2010, 7, 3-18.	3.4	189
7	Near-IR photoactivation using mesoporous silica–coated NaYF4:Yb,Er/Tm upconversion nanoparticles. Nature Protocols, 2016, 11, 688-713.	12.0	164
8	Monocyte cell membrane-derived nanoghosts for targeted cancer therapy. Nanoscale, 2016, 8, 6981-6985.	5.6	115
9	Upconversion superballs for programmable photoactivation of therapeutics. Nature Communications, 2019, 10, 4586.	12.8	100
10	Quasiâ€Continuous Wave Nearâ€Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of <i>C. elegans</i> . Small, 2016, 12, 1732-1743.	10.0	93
11	Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nature Communications, 2019, 10, 4416.	12.8	85
12	Near-Infrared-Light-Based Nano-Platform Boosts Endosomal Escape and Controls Gene Knockdown <i>in Vivo</i> . ACS Nano, 2014, 8, 4848-4858.	14.6	80
13	Modularly Assembled Upconversion Nanoparticles for Orthogonally Controlled Cell Imaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12549-12556.	8.0	40
14	Luminescent lanthanide nanomaterials: an emerging tool for theranostic applications. Nanomedicine, 2015, 10, 1477-1491.	3.3	33
15	A paradigm shift in the excitation wavelength of upconversion nanoparticles. Nanoscale, 2014, 6, 8441-8443.	5.6	32
16	Surface protein engineering increases the circulation time of a cell membrane-based nanotherapeutic. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 169-178.	3.3	26
17	Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish. Nanomedicine, 2015, 10, 1051-1061.	3.3	21
18	Lutetium doping for making big core and core–shell upconversion nanoparticles. Journal of Materials Chemistry C, 2015, 3, 10267-10272.	5.5	21

Митни кимага

#	Article	lF	CITATIONS
19	Tuning the energy migration and new insights into the mechanism of upconversion. Nanoscale, 2014, 6, 8439.	5.6	10
20	Simultaneous gene delivery and tracking of cells using fluorescent upconversion nanoparticles for cell therapy. Materials Research Society Symposia Proceedings, 2011, 1355, 1.	0.1	0
21	Upconverting fluorescent nanoparticles for biodetection and photoactivation. , 2013, , .		O
22	Multi-Functional Fluorescent Upconversion Nanocrystals for Simultaneous Imaging and Delivery of Peptide Toxins. Key Engineering Materials, 0, 605, 364-367.	0.4	0