Guoping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838981/publications.pdf Version: 2024-02-01

		28274	30922
224	12,474	55	102
papers	citations	h-index	g-index
222	222	222	10700
233	233	233	13733
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 1995, 373, 49-52.	27.8	1,222
2	Scaffold Design for Tissue Engineering. Macromolecular Bioscience, 2002, 2, 67-77.	4.1	573
3	Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and Biophysical Research Communications, 2004, 320, 914-919.	2.1	378
4	Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia, 2014, 10, 2005-2013.	8.3	263
5	Decellularized matrices for tissue engineering. Expert Opinion on Biological Therapy, 2010, 10, 1717-1728.	3.1	257
6	Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomaterialia, 2012, 8, 341-349.	8.3	240
7	The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials, 2010, 31, 2141-2152.	11.4	219
8	Functional Hydrogels With Tunable Structures and Properties for Tissue Engineering Applications. Frontiers in Chemistry, 2018, 6, 499.	3.6	211
9	Development of biodegradable porous scaffolds for tissue engineering. Materials Science and Engineering C, 2001, 17, 63-69.	7.3	199
10	Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials, 2011, 32, 9658-9666.	11.4	198
11	Optical Properties of Rectangular Cross-sectional ZnS Nanowires. Nano Letters, 2004, 4, 1663-1668.	9.1	194
12	Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8, 7992-8007.	5.6	193
13	Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomaterialia, 2013, 9, 8004-8014.	8.3	192
14	Culturing of skin fibroblasts in a thin PLGA–collagen hybrid mesh. Biomaterials, 2005, 26, 2559-2566.	11.4	182
15	A biodegradable hybrid sponge nested with collagen microsponges. , 2000, 51, 273-279.		179
16	Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 2007, 28, 4939-4946.	11.4	177
17	Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials, 2011, 32, 2489-2499.	11.4	174
18	Tissue Engineering of Cartilage Using a Hybrid Scaffold of Synthetic Polymer and Collagen. Tissue Engineering, 2004, 10, 323-330.	4.6	160

2

#	Article	IF	CITATIONS
19	3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Polymers, 2016, 8, 269.	4.5	160
20	Preparation and properties of thermoreversible, phase-separating enzyme-oligo(N-isopropylacrylamide) conjugates. Bioconjugate Chemistry, 1993, 4, 509-514.	3.6	156
21	The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1170-1180.	4.0	156
22	Hybrid Biomaterials for Tissue Engineering: A Preparative Method for PLA or PLGA-Collagen Hybrid Sponges. Advanced Materials, 2000, 12, 455-457.	21.0	153
23	Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials, 2015, 54, 226-236.	11.4	143
24	Decellularized Extracellular Matrix as an <i>In Vitro</i> Model to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells International, 2016, 2016, 1-10.	2.5	141
25	Preparation of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams by use of ice microparticulates. Biomaterials, 2001, 22, 2563-2567.	11.4	131
26	Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials, 2015, 73, 23-31.	11.4	126
27	Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 81-94.	3.5	111
28	Regulating the stemness of mesenchymal stem cells by tuning micropattern features. Journal of Materials Chemistry B, 2016, 4, 37-45.	5.8	111
29	Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomaterialia, 2018, 67, 341-353.	8.3	110
30	Optical Antenna Effect in Semiconducting Nanowires. Nano Letters, 2008, 8, 1341-1346.	9.1	108
31	Development of Stepwise Osteogenesis-mimicking Matrices for the Regulation of Mesenchymal Stem Cell Functions. Journal of Biological Chemistry, 2009, 284, 31164-31173.	3.4	105
32	Adipogenic Differentiation of Individual Mesenchymal Stem Cell on Different Geometric Micropatterns. Langmuir, 2011, 27, 6155-6162.	3.5	103
33	Heterotypic cell interactions on a dually patterned surface. Biochemical and Biophysical Research Communications, 2006, 348, 937-944.	2.1	97
34	Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials, 2012, 33, 6140-6146.	11.4	93
35	Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. Biomaterials, 2001, 22, 2453-2457.	11.4	92
36	Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from threeâ€dimensional cell culture. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2507-2516.	4.0	92

#	Article	IF	CITATIONS
37	Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates. Biomaterials, 2010, 31, 5825-5835.	11.4	83
38	Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. Journal of Biomedical Materials Research Part B, 2001, 57, 8-14.	3.1	82
39	Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2016, 22, 189-198.	2.1	82
40	Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochemical and Biophysical Research Communications, 2004, 322, 50-55.	2.1	81
41	In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Biomaterials, 2008, 29, 3438-3443.	11.4	80
42	Preparation of a biphasic scaffold for osteochondral tissue engineering. Materials Science and Engineering C, 2006, 26, 118-123.	7.3	79
43	Insight into the interactions between nanoparticles and cells. Biomaterials Science, 2017, 5, 173-189.	5.4	78
44	Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1358, 200-208.	4.1	77
45	Biodegradable polymer with collagen microsponge serves as a new bioengineered cardiovascular prosthesis. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 472-479.	0.8	77
46	Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials, 2008, 29, 23-32.	11.4	75
47	Development of Extracellular Matrices Mimicking Stepwise Adipogenesis of Mesenchymal Stem Cells. Advanced Materials, 2010, 22, 3042-3047.	21.0	75
48	Influence of stepwise chondrogenesis-mimicking 3D extracellular matrix on chondrogenic differentiation of mesenchymal stem cells. Biomaterials, 2015, 52, 199-207.	11.4	74
49	Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh. FEBS Letters, 2003, 542, 95-99.	2.8	72
50	Influence of cell size on cellular uptake of gold nanoparticles. Biomaterials Science, 2016, 4, 970-978.	5.4	70
51	The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials, 2012, 33, 2025-2031.	11.4	68
52	TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation. ACS Applied Materials & amp; Interfaces, 2017, 9, 35683-35692.	8.0	66
53	PLLA–collagen and PLLA–gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and Technology of Advanced Materials, 2012, 13, 064210.	6.1	62
54	Fabrication of Highly Crosslinked Gelatin Hydrogel and Its Influence on Chondrocyte Proliferation and Phenotype. Polymers, 2017, 9, 309.	4.5	62

#	Article	IF	CITATIONS
55	Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy. Journal of Materials Chemistry B, 2017, 5, 245-253.	5.8	58
56	Synthesis of carboxylated poly(NIPAAm) oligomers and their application to form thermo-reversible polymer-enzyme conjugates. Journal of Biomaterials Science, Polymer Edition, 1994, 5, 371-382.	3.5	57
57	Tissue-engineered urinary bladder wall sing PLGA mesh-collagen hybrid scaffolds: a omparison study of collagen sponge and gel as a caffold. Journal of Pediatric Surgery, 2003, 38, 1781-1784.	1.6	57
58	A hybrid network of synthetic polymer mesh and collagen sponge. Chemical Communications, 2000, , 1505-1506.	4.1	55
59	Tracheal defect repair using a PLGA–collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatric Surgery International, 2010, 26, 575-580.	1.4	55
60	Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes. Biomaterials, 2013, 34, 2472-2479.	11.4	55
61	Evaluation of PLLA–collagen hybrid sponge as a scaffold for cartilage tissue engineering. Materials Science and Engineering C, 2004, 24, 365-372.	7.3	54
62	Discriminating the Independent Influence of Cell Adhesion and Spreading Area on Stem Cell Fate Determination Using Micropatterned Surfaces. Scientific Reports, 2016, 6, 28708.	3.3	53
63	Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO2-based composite photocatalyst under LED irradiation: Influence of environmental factors and disinfection mechanism. Environmental Pollution, 2019, 247, 847-856.	7.5	53
64	In vitro Proliferation and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Cultured with Hardystonite (Ca2ZnSi 2O7) and β-TCP Ceramics. Journal of Biomaterials Applications, 2010, 25, 39-56.	2.4	51
65	A cell leakproof PLGAâ€collagen hybrid scaffold for cartilage tissue engineering. Biotechnology Progress, 2010, 26, 819-826.	2.6	49
66	Preparation of Novel Collagen Sponges Using an Ice Particulate Template. Journal of Bioactive and Compatible Polymers, 2010, 25, 360-373.	2.1	49
67	PEG assisted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with enhanced elimination of emerging organic pollutants in salinity condition under solar light illumination. Chemical Engineering Journal, 2020, 385, 123765.	12.7	49
68	Preparation of Porous Collagen Scaffolds with Micropatterned Structures. Advanced Materials, 2012, 24, 4311-4316.	21.0	48
69	Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials, 2017, 133, 253-262.	11.4	48
70	Dependence of Spreading and Differentiation of Mesenchymal Stem Cells on Micropatterned Surface Area. Journal of Nanomaterials, 2011, 2011, 1-9.	2.7	47
71	Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. Journal of Bioactive and Compatible Polymers, 2013, 28, 426-438.	2.1	47
72	Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials, 2019, 197, 317-326.	11.4	47

#	Article	IF	CITATIONS
73	Polyethylene glycol (PEG)-modified Ag/Ag2O/Ag3PO4/Bi2WO6 photocatalyst film with enhanced efficiency and stability under solar light. Journal of Colloid and Interface Science, 2020, 569, 101-113.	9.4	47
74	Influence of Sulfateâ€Reducing Bacteria on the Passivity of Type 304 Austenitic Stainless Steel. Journal of the Electrochemical Society, 1997, 144, 3140-3146.	2.9	46
75	Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2009, 381, 322-327.	2.1	46
76	Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 341-350.	3.4	44
77	Osteogenic differentiation of human mesenchymal stem cells on chargeable polymerâ€modified surfaces. Journal of Biomedical Materials Research - Part A, 2008, 87A, 903-912.	4.0	43
78	The combined influence of substrate elasticity and surface-grafted molecules on the exÂvivo expansion of hematopoietic stem and progenitor cells. Biomaterials, 2013, 34, 7632-7644.	11.4	43
79	The osteogenic differentiation of mesenchymal stem cells by controlled cell–cell interaction on micropatterned surfaces. Journal of Biomedical Materials Research - Part A, 2013, 101, 3388-3395.	4.0	43
80	Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue. Advances in Experimental Medicine and Biology, 2018, 1058, 171-191.	1.6	43
81	Influence of Cell Spreading Area on the Osteogenic Commitment and Phenotype Maintenance of Mesenchymal Stem Cells. Scientific Reports, 2019, 9, 6891.	3.3	43
82	A Novel Cylinder-Type Poly(L-Lactic Acid)–Collagen Hybrid Sponge for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2010, 16, 329-338.	2.1	42
83	Maintenance of cartilaginous gene expression on extracellular matrix derived from serially passaged chondrocytes during <i>in vitro</i> chondrocyte expansion. Journal of Biomedical Materials Research - Part A, 2012, 100A, 694-702.	4.0	42
84	Preparation of collagen porous scaffolds with a gradient pore size structure using ice particulates. Materials Letters, 2013, 107, 280-283.	2.6	40
85	Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells. Journal of Materials Chemistry B, 2015, 3, 5806-5814.	5.8	40
86	Photolithographic Synthesis of Hydrogels. Macromolecules, 1998, 31, 4379-4381.	4.8	39
87	Three-dimensional Cultures of Rat Pancreatic RIN-5F Cells in Porous PLGA-collagen Hybrid Scaffolds. Journal of Bioactive and Compatible Polymers, 2009, 24, 25-42.	2.1	39
88	Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 138, 26-31.	5.0	38
89	Influence of microporous gelatin hydrogels on chondrocyte functions. Journal of Materials Chemistry B, 2017, 5, 5753-5762.	5.8	38
90	Biodegradable porous scaffolds for tissue engineering. Journal of Artificial Organs, 2002, 5, 77-83.	0.9	37

#	Article	IF	CITATIONS
91	Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 316-323.	5.0	36
92	Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 1353-1362.	5.8	36
93	Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Research, 2018, 11, 1247-1261.	10.4	36
94	Layered Ag/Ag2O/BiPO4/Bi2WO6 heterostructures by two-step method for enhanced photocatalysis. Journal of Catalysis, 2020, 387, 28-38.	6.2	36
95	Preparation of Collagenâ€Glycosaminoglycan Sponges with Open Surface Porous Structures Using Ice Particulate Template Method. Macromolecular Bioscience, 2010, 10, 860-871.	4.1	34
96	Structural changes and biodegradation of PLLA, PCL, and PLGA sponges during in vitro incubation. Polymer Engineering and Science, 2010, 50, 1895-1903.	3.1	34
97	Bifunctional scaffolds for the photothermal therapy of breast tumor cells and adipose tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 7728-7736.	5.8	33
98	Surface modification of porous scaffolds with nanothick collagen layer by centrifugation and freezeâ€drying. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 864-872.	3.4	32
99	PLGA–collagen–ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis- <i>co</i> -adipogenesis. Journal of Materials Chemistry B, 2019, 7, 7195-7206.	5.8	32
100	Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. Journal of Materials Chemistry B, 2019, 7, 7713-7722.	5.8	32
101	Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications. Science and Technology of Advanced Materials, 2021, 22, 404-428.	6.1	32
102	Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnology Progress, 2011, 27, 788-795.	2.6	31
103	Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films. Journal of Applied Physics, 2013, 113, .	2.5	31
104	Preparation of gelatin/Fe ₃ O ₄ composite scaffolds for enhanced and repeatable cancer cell ablation. Journal of Materials Chemistry B, 2016, 4, 5664-5672.	5.8	31
105	Regulation of mesenchymal stem cell functions by micro–nano hybrid patterned surfaces. Journal of Materials Chemistry B, 2018, 6, 5424-5434.	5.8	31
106	Osteochondral tissue engineering using a PLGA–collagen hybrid mesh. Materials Science and Engineering C, 2006, 26, 124-129.	7.3	30
107	Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a web-like biodegradable hybrid sheet. Cell and Tissue Research, 2004, 316, 141-153.	2.9	29
108	Influence of cell protrusion and spreading on adipogenic differentiation of mesenchymal stem cells on micropatterned surfaces. Soft Matter, 2013, 9, 4160.	2.7	29

#	Article	IF	CITATIONS
109	Manipulating Cell Nanomechanics Using Micropatterns. Advanced Functional Materials, 2016, 26, 7634-7643.	14.9	29
110	Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation. Acta Biomaterialia, 2016, 35, 185-193.	8.3	28
111	Interconnected collagen porous scaffolds prepared with sacrificial PLGA sponge templates for cartilage tissue engineering. Journal of Materials Chemistry B, 2021, 9, 8491-8500.	5.8	28
112	Preparation of PLGA-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. Progress in Natural Science: Materials International, 2020, 30, 642-650.	4.4	28
113	Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Science and Technology of Advanced Materials, 2022, 23, 413-423.	6.1	28
114	Biomimetic Assembly of Vascular Endothelial Cells and Muscle Cells in Microgrooved Collagen Porous Scaffolds. Tissue Engineering - Part C: Methods, 2017, 23, 367-376.	2.1	27
115	Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials, 2021, 271, 120751.	11.4	27
116	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
117	Composite scaffolds of black phosphorus nanosheets and gelatin with controlled pore structures for photothermal cancer therapy and adipose tissue engineering. Biomaterials, 2021, 275, 120923.	11.4	27
118	Thermoresponsive Microtextured Culture Surfaces Facilitate Fabrication of Capillary Networks. Advanced Materials, 2007, 19, 3633-3636.	21.0	26
119	Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Advanced Healthcare Materials, 2017, 6, 1700317.	7.6	26
120	Influence of Cell Morphology on Mesenchymal Stem Cell Transfection. ACS Applied Materials & Interfaces, 2019, 11, 1932-1941.	8.0	26
121	The varied influences of cell adhesion and spreading on gene transfection of mesenchymal stem cells on a micropatterned substrate. Acta Biomaterialia, 2021, 125, 100-111.	8.3	26
122	Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 126, 381-386.	5.0	25
123	Single mammalian cell encapsulation by in situ polymerization. Journal of Materials Chemistry B, 2016, 4, 7662-7668.	5.8	25
124	Photothermal Ablation of Cancer Cells by Albumin-Modified Gold Nanorods and Activation of Dendritic Cells. Materials, 2019, 12, 31.	2.9	25
125	Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Materials Science and Engineering C, 2004, 24, 861-866.	7.3	24
126	Collagen Scaffolds with Controlled Insulin Release and Controlled Pore Structure for Cartilage Tissue Engineering. BioMed Research International, 2014, 2014, 1-10.	1.9	24

#	Article	IF	CITATIONS
127	Promoted Angiogenesis and Osteogenesis by Dexamethasone-loaded Calcium Phosphate Nanoparticles/Collagen Composite Scaffolds with Microgroove Networks. Scientific Reports, 2018, 8, 14143.	3.3	24
128	PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication, 2020, 12, 025027.	7.1	24
129	Exploring adipogenic differentiation of a single stem cell on poly(acrylic acid) and polystyrene micropatterns. Soft Matter, 2012, 8, 8429.	2.7	22
130	Grid Pattern of Nanothick Microgel Network. Langmuir, 2007, 23, 5864-5867.	3.5	21
131	Morphological and Mechanical Properties of Osteosarcoma Microenvironment Cells Explored by Atomic Force Microscopy. Analytical Sciences, 2016, 32, 1177-1182.	1.6	21
132	The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopy. Micron, 2018, 108, 41-48.	2.2	21
133	ECM scaffolds mimicking extracellular matrices of endochondral ossification for the regulation of mesenchymal stem cell differentiation. Acta Biomaterialia, 2020, 114, 158-169.	8.3	21
134	Highly active porous scaffolds of collagen and hyaluronic acid prepared by suppression of polyion complex formation. Journal of Materials Chemistry B, 2014, 2, 5612-5619.	5.8	20
135	Mechanism of Regulation of <i>PPARG</i> Expression of Mesenchymal Stem Cells by Osteogenesis-Mimicking Extracellular Matrices. Bioscience, Biotechnology and Biochemistry, 2011, 75, 2099-2104.	1.3	19
136	Folic Acid–Functionalized Composite Scaffolds of Gelatin and Gold Nanoparticles for Photothermal Ablation of Breast Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 589905.	4.1	19
137	Development of an oyster shell and lignite modified zeolite (OLMZ) fixed bioreactor coupled with intermittent light stimulation for high efficient ammonium-rich anaerobic digestion process. Chemical Engineering Journal, 2020, 398, 125637.	12.7	19
138	Adipogenic Differentiation of Mesenchymal Stem Cells on Micropatterned Polyelectrolyte Surfaces. Journal of Nanoscience and Nanotechnology, 2009, 9, 230-239.	0.9	18
139	Coating of collagen on a poly(l-lactic acid) sponge surface for tissue engineering. Materials Science and Engineering C, 2012, 32, 290-295.	7.3	18
140	Collagen microgel-assisted dexamethasone release from PLLA-collagen hybrid scaffolds of controlled pore structure for osteogenic differentiation of mesenchymal stem cells. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1374-1386.	3.5	18
141	Stem cell culture using cell-derived substrates. Biomaterials Science, 2014, 2, 1595-1603.	5.4	18
142	Effect of high molecular weight hyaluronic acid on chondrocytes cultured in collagen/hyaluronic acid porous scaffolds. RSC Advances, 2015, 5, 94405-94410.	3.6	18
143	Cell response to single-walled carbon nanotubes in hybrid porous collagen sponges. Colloids and Surfaces B: Biointerfaces, 2015, 126, 63-69.	5.0	18
144	Preparation of dexamethasone-loaded calcium phosphate nanoparticles for the osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 6801-6810.	5.8	18

#	Article	IF	CITATIONS
145	Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells in Gelatin Solutions of Different Viscosities. Advanced Healthcare Materials, 2020, 9, e2000617.	7.6	18
146	PLGA–collagen–BPNS Bifunctional composite mesh for photothermal therapy of melanoma and skin tissue engineering. Journal of Materials Chemistry B, 2022, 10, 204-213.	5.8	17
147	Visible light active graphene oxide modified Ag/Ag2O/BiPO4/Bi2WO6 for photocatalytic removal of organic pollutants and bacteria in wastewater. Chemosphere, 2022, 306, 135512.	8.2	17
148	Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge. Materials Science and Engineering C, 2008, 28, 195-201.	7.3	16
149	Spatially Guided Angiogenesis by Three-Dimensional Collagen Scaffolds Micropatterned with Vascular Endothelial Growth Factor. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2185-2195.	3.5	16
150	Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes. Nanoscale, 2014, 6, 1552-1559.	5.6	16
151	Enhanced spin injection and voltage bias in (Zn,Co)O/MgO/(Zn,Co)O magnetic tunnel junctions. Applied Physics Letters, 2009, 95, .	3.3	15
152	Effects of Structural Change Induced by Physical Aging on the Biodegradation Behavior of PLGA Films at Physiological Temperature. Macromolecular Materials and Engineering, 2011, 296, 1028-1034.	3.6	14
153	Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels. Journal of Materials Science and Technology, 2021, 63, 1-8.	10.7	14
154	InGaAs quantum wells on wafer-bonded InPâ^•GaAs substrates. Journal of Applied Physics, 2005, 98, 093526.	2.5	13
155	Variation of Mechanical Property of Single-Walled Carbon Nanotubes-Treated Cells Explored by Atomic Force Microscopy. Journal of Biomedical Nanotechnology, 2014, 10, 651-659.	1.1	13
156	Effect of Single-Wall Carbon Nanotubes on Mechanical Property of Chondrocytes. Journal of Nanoscience and Nanotechnology, 2014, 14, 2459-2465.	0.9	13
157	Preparation of Cylinder-Shaped Porous Sponges of Poly(L-lactic acid), Poly(DL-lactic-co-glycolic acid), and Poly(ε-caprolactone). BioMed Research International, 2014, 2014, 1-8.	1.9	13
158	Preparation of collagen porous scaffolds with controlled and sustained release of bioactive insulin. Journal of Bioactive and Compatible Polymers, 2014, 29, 95-109.	2.1	13
159	IGF-2 coated porous collagen microwells for the culture of pancreatic islets. Journal of Materials Chemistry B, 2017, 5, 220-225.	5.8	13
160	Preparation of mesh-like collagen scaffolds for tissue engineering. Materials Advances, 2022, 3, 1556-1564.	5.4	13
161	Cell adhesion of bone marrow cells, chondrocytes, ligament cells and synovial cells on a PLGA–collagen hybrid mesh. Materials Science and Engineering C, 2004, 24, 867-873.	7.3	12
162	Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes. Biochemical and Biophysical Research Communications, 2008, 374, 688-692.	2.1	12

#	Article	IF	CITATIONS
163	Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Biomedical Materials (Bristol), 2011, 6, 045011.	3.3	12
164	Cellular effects of magnetic nanoparticles explored by atomic force microscopy. Biomaterials Science, 2015, 3, 1284-1290.	5.4	12
165	Promotion of muscle regeneration by myoblast transplantation combined with the controlled and sustained release of bFGFcpr. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 325-333.	2.7	12
166	Targeting ligand-functionalized photothermal scaffolds for cancer cell capture and in situ ablation. Biomaterials Science, 2017, 5, 2276-2284.	5.4	12
167	Preparation of Stepwise Adipogenesis-Mimicking ECM-Deposited PLGA–Collagen Hybrid Meshes and Their Influence on Adipogenic Differentiation of hMSCs. ACS Biomaterials Science and Engineering, 2019, 5, 6099-6108.	5.2	12
168	Regulation of gene transfection by cell size, shape and elongation on micropatterned surfaces. Journal of Materials Chemistry B, 2021, 9, 4329-4339.	5.8	12
169	Development of a novel solar energy controllable Linear fresnel photoreactor (LFP) for high-efficiency photocatalytic wastewater treatment under actual weather. Water Research, 2022, 208, 117880.	11.3	12
170	Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. Journal of Materials Chemistry B, 2022, 10, 4771-4782.	5.8	12
171	Cellular Uptake of Single-Walled Carbon Nanotubes in 3D Extracellular Matrix-Mimetic Composite Collagen Hydrogels. Journal of Nanoscience and Nanotechnology, 2014, 14, 2487-2492.	0.9	11
172	Hysteretic giant magnetoresistance curves induced by interlayer magnetostatic coupling in [Pd/Co]/Cu/Co/Cu/[Co/Pd] dual spin valves. Journal of Applied Physics, 2010, 107, 083902.	2.5	10
173	Cartilage tissue engineering with controllable shape using a poly(lactic- <i>co</i> -glycolic) Tj ETQq1 1 0.784314	rgBT /Ove 2.1	rlock 10 Tf 5
174	Effects of extracellular matrix proteins in chondrocyteâ€derived matrices on chondrocyte functions. Biotechnology Progress, 2013, 29, 1331-1336.	2.6	10
175	X-ray photoelectron spectroscopy analysis of Mo metal surface exposed to sulfate-reducing bacteria. Surface and Interface Analysis, 1999, 27, 230-235.	1.8	9
176	First-Principles Study on the Electronic Structure and Elastic Properties of YCu, DyCu and YAg. Materials Transactions, 2008, 49, 2480-2483.	1.2	9
177	Influence of the Mn concentration on the electromechanical response <i>d</i> ₃₃ of Mnâ€doped ZnO films. Physica Status Solidi - Rapid Research Letters, 2010, 4, 209-211.	2.4	9
178	Differentiation of PC12 cells in threeâ€dimensional collagen sponges with micropatterned nerve growth factor. Biotechnology Progress, 2012, 28, 773-779.	2.6	9
179	Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. Journal of Materials Chemistry B, 2018, 6, 1018-1025.	5.8	9
180	Photo-Crosslinkable Hydrogels for Tissue Engineering Applications. , 2018, , 277-300.		9

#	Article	IF	CITATIONS
181	Synthesis of photo-reactive poly (vinyl alcohol) and construction of scaffold-free cartilage like pellets in vitro. International Journal of Energy Production and Management, 2018, 5, 159-166.	3.7	9
182	Influences of viscosity on the osteogenic and adipogenic differentiation of mesenchymal stem cells with controlled morphology. Journal of Materials Chemistry B, 2022, 10, 3989-4001.	5.8	9
183	Equal Channel Angular Pressing Die Outer Corner Angle Influence on Flow and Strain Homogeneity. Advanced Engineering Materials, 2007, 9, 572-576.	3.5	8
184	Micropatterned angiogenesis induced by poly(<scp>d</scp> , <scp>l</scp> -lactic- <i>co</i> -glycolic) Tj ETQq0 0 C) rgBT /Ove 2.1	rlgck 10 Tf 5

185	Preparation of Polymer Scaffolds by Ice Particulate Method for Tissue Engineering. , 2016, , 77-95.		8
186	Change of the mechanical properties of chondrocytes during expansion culture. Soft Matter, 2010, 6, 2462.	2.7	6
187	One-pot synthesis of polyaniline doped with transition metal ions using H2 O2 as oxidant. Polymers for Advanced Technologies, 2014, 25, 1391-1395.	3.2	6
188	Preparation of Cell-Derived Decellularized Matrices Mimicking Native ECM During the Osteogenesis and Adipogenesis of Mesenchymal Stem Cells. Methods in Molecular Biology, 2017, 1577, 71-86.	0.9	6
189	Interaction of Immune Cells and Tumor Cells in Gold Nanorod–Gelatin Composite Porous Scaffolds. Nanomaterials, 2019, 9, 1367.	4.1	6
190	Photon number based anaerobic digestion process for efficient bio-methane conversion from ammonium-rich feedstock: Performance evaluation and practical potential. Energy Conversion and Management, 2021, 238, 114155.	9.2	6
191	Micropatternâ€Controlled Cell Density and Its Effect on Gene Transfection of Mesenchymal Stem Cells. Advanced Materials Interfaces, 0, , 2101978.	3.7	6
192	Three-dimensional culture and chondrogenic differentiation of mesenchymal stem cells in interconnected collagen scaffolds. Biomedical Materials (Bristol), 2022, 17, 034103.	3.3	6
193	Poly(Vinyl Alcohol)-Micropatterned Surfaces for Manipulation of Mesenchymal Stem Cell Functions. Methods in Cell Biology, 2014, 119, 17-33.	1.1	5
194	Light stimulation strategy for promoting bio-hydrogen production: Microbial community, metabolic pathway and long-term application. Bioresource Technology, 2022, 350, 126902.	9.6	5
195	Preparation and characterization of complex gel of type I collagen and aluminosilicate containing imogolite nanofibers. Journal of Applied Polymer Science, 2010, 118, 2284-2290.	2.6	4
196	Biomimetic Extracellular Matrices and Scaffolds Prepared from Cultured Cells. Advances in Experimental Medicine and Biology, 2018, 1078, 465-474.	1.6	4
197	Regulation of Stem Cell Functions by Micro-Patterned Structures. Advances in Experimental Medicine and Biology, 2020, 1250, 141-155.	1.6	4
198	Bactericidal process and practicability for environmental water sterilization by solar-light-driven Bi2WO6-based photocatalyst. Journal of Water Process Engineering, 2022, 47, 102713.	5.6	4

#	Article	IF	CITATIONS
199	Long-Term Fluorescent Tissue Marking Using Tissue-Adhesive Porphyrin with Polycations Consisting of Quaternary Ammonium Salt Groups. International Journal of Molecular Sciences, 2022, 23, 4218.	4.1	4
200	Preparation of composite scaffolds composed of gelatin and Au nanostar-deposited black phosphorus nanosheets for the photothermal ablation of cancer cells and adipogenic differentiation of stem cells. , 2022, 138, 212938.		4
201	Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. International Journal of Molecular Sciences, 2022, 23, 6406.	4.1	4
202	Collagen-based scaffolds. , 2008, , 396-415.		3
203	Focus on nanobiomaterials and technologies for breakthrough in future medicine. Science and Technology of Advanced Materials, 2010, 11, 010302.	6.1	3
204	Sustainable and efficient reduction of pollutants by immobilized PEG-P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst for purification of saline wastewater. Marine Pollution Bulletin, 2022, 179, 113731.	5.0	3
205	Preparation of polymer-based porous scaffolds for tissue engineering. , 2016, , 105-125.		2
206	Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2â€Methoxyethyl Acrylate) Analogous Polymers. Macromolecular Bioscience, 2017, 17, 1700297.	4.1	2
207	<i>Materials Horizons</i> , <i>Journal of Materials Chemistry B</i> and <i>Materials Advances</i> Editor's Choice Web Collection: Recent Advances in Tissue Engineering Scaffolds. Materials Horizons, 2022, 9, 2021-2023.	12.2	2
208	Surface Modification for Medical Devices. , 2018, , 133-177.		1
209	Journal of Materials Chemistry B and Biomaterials Science Editor's choice web collection: "Recent advances in microfluidics― Journal of Materials Chemistry B, 2021, 9, 3606-3607.	5.8	1
210	Scaffold Design for Tissue Engineering. , 2002, 2, 67.		1
211	Hybrid Porous Scaffolds of Biodegradable Synthetic Polymers and Collagen for Tissue Engineering. , 2012, , 417-434.		1
212	Morphological Dependence of Breast Cancer Cell Responses to Doxorubicin on Micropatterned Surfaces. Polymers, 2022, 14, 2761.	4.5	1
213	Polyfunctional Scaffolds for Tissue Engineering. Journal of Biomechanical Science and Engineering, 2006, 1, 8-15.	0.3	0
214	Response to "Comment on â€ [~] Enhanced spin injection and voltage bias in (Zn,Co)O/MgO/(Zn,Co)O magnetic tunnel junctions' ―[Appl. Phys. Lett. 96, 116101 (2010)]. Applied Physics Letters, 2010, 96, 1161	02: ³	0
215	Chapter 2: Preparation of Tissue Development — Mimicking Matrices and Their Applications. Frontiers in Nanobiomedical Research, 2014, , 61-75.	0.1	0
216	Osteogenesis with Cells and Scaffold Journal of Hard Tissue Biology, 2005, 14, 255-257.	0.4	0

#	Article	IF	CITATIONS
217	Biodegradability Evaluation of Scaffolds. Journal of Life Support Engineering, 2007, 19, 164-164.	0.0	ο
218	Manipulation of Stem Cell Functions On Grafted Polymer Surfaces. , 2008, , .		0
219	In Vitro Biodegradation of Poly(Lactic-co-Glycolic Acid) Porous Scaffolds. , 2008, , .		0
220	Biomaterials and Mechanical Stimulation in Tissue Engineering. , 2008, , .		0
221	SY31 Polymeric porous scaffolds for regenerative medicine. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 39-40.	0.0	0
222	Scaffolds, Porous Polymer: Tissue Engineering. , 0, , 7085-7092.		0
223	Scaffolds, Porous Polymer: Tissue Engineering. , 2017, , 1374-1381.		0
224	Preparation of Polymeric Porous Scaffolds for Regenerative Medicine. Membrane, 2018, 43, 215-223.	0.0	0