John C Fyfe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389521/publications.pdf

Version: 2024-02-01

		87723	82410
71	5,687	38	72
papers	citations	h-index	g-index
			6070
77	77	77	6252
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolving Sahel Rainfall Response to Anthropogenic Aerosols Driven by Shifting Regional Oceanic and Emission Influences. Journal of Climate, 2022, , 1-27.	1.2	7
2	Arctic change reduces risk of cold extremes. Science, 2022, 375, 729-729.	6.0	7
3	On the Southern Hemisphere Stratospheric Response to ENSO and Its Impacts on Tropospheric Circulation. Journal of Climate, 2022, 35, 1963-1981.	1.2	2
4	Robust Anthropogenic Signal Identified in the Seasonal Cycle of Tropospheric Temperature. Journal of Climate, 2022, 35, 6075-6100.	1.2	6
5	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	8.1	23
6	Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Communications Earth & Environment, 2021, 2, .	2.6	58
7	Quantifying the influence of short-term emission reductions on climate. Science Advances, 2021, 7, .	4.7	24
8	The Ocean Carbon Response to COVIDâ€Related Emissions Reductions. Geophysical Research Letters, 2021, 48, e2020GL092263.	1.5	9
9	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	2.7	236
10	Quantifying Errors in Observationally Based Estimates of Ocean Carbon Sink Variability. Global Biogeochemical Cycles, 2021, 35, e2020GB006788.	1.9	60
11	Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
12	Decreasing subseasonal temperature variability in the northern extratropics attributed to human influence. Nature Geoscience, 2021, 14, 719-723.	5.4	19
13	On the Detection of COVIDâ€Driven Changes in Atmospheric Carbon Dioxide. Geophysical Research Letters, 2021, 48, e2021GL095396.	1.5	2
14	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
15	Contrasting Recent Trends in Southern Hemisphere Westerlies Across Different Ocean Basins. Geophysical Research Letters, 2020, 47, e2020GL088890.	1.5	13
16	Ongoing AMOC and related sea-level and temperature changes after achieving the Paris targets. Nature Climate Change, 2020, 10, 672-677.	8.1	15
17	A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 2020, 579, 544-548.	13.7	106
18	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	8.1	436

#	Article	IF	CITATIONS
19	Human influence on joint changes in temperature, rainfall and continental aridity. Nature Climate Change, 2020, 10, 726-731.	8.1	75
20	Antarctica and the Southern Ocean. Bulletin of the American Meteorological Society, 2020, 101, S287-S320.	1.7	15
21	Anthropogenic Aerosols Dominate Forced Multidecadal Sahel Precipitation Change through Distinct Atmospheric and Oceanic Drivers. Journal of Climate, 2020, 33, 10187-10204.	1,2	16
22	Midlatitudes unaffected by sea ice loss. Nature Climate Change, 2019, 9, 649-650.	8.1	8
23	Quantifying stochastic uncertainty in detection time of human-caused climate signals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19821-19827.	3.3	32
24	Ice-free Arctic projections under the Paris Agreement. Nature Climate Change, 2018, 8, 404-408.	8.1	77
25	No Impact of Anthropogenic Aerosols on Early 21st Century Global Temperature Trends in a Large Initialâ€Condition Ensemble. Geophysical Research Letters, 2018, 45, 9245-9252.	1.5	25
26	Aerosolâ€driven increase in Arctic sea ice over the middle of the twentieth century. Geophysical Research Letters, 2017, 44, 7338-7346.	1.5	32
27	Large near-term projected snowpack loss over the western United States. Nature Communications, 2017, 8, 14996.	5.8	203
28	Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophysical Research Letters, 2017, 44, 7955-7964.	1.5	63
29	The United States "warming hole― Quantifying the forced aerosol response given large internal variability. Geophysical Research Letters, 2017, 44, 1928-1937.	1.5	29
30	Arctic sea ice response to the eruptions of Agung, El Chich \tilde{A}^3 n, and Pinatubo. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8071-8078.	1.2	17
31	Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geoscience, 2016, 9, 838-842.	5 . 4	247
32	Potential nearâ€future carbon uptake overcomes losses from a large insect outbreak in British Columbia, Canada. Geophysical Research Letters, 2016, 43, 2590-2598.	1.5	25
33	Tropical Pacific impacts on cooling NorthÂAmerican winters. Nature Climate Change, 2016, 6, 970-974.	8.1	65
34	Making sense of the early-2000s warming slowdown. Nature Climate Change, 2016, 6, 224-228.	8.1	333
35	Impact of aerosol emission controls on future Arctic sea ice cover. Geophysical Research Letters, 2015, 42, 8481-8488.	1.5	29
36	Comparing Trends in the Southern Annular Mode and Surface Westerly Jet. Journal of Climate, 2015, 28, 8840-8859.	1.2	80

#	Article	IF	CITATIONS
37	Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophysical Research Letters, 2015, 42, 500-509.	1.5	50
38	Decadal modulation of global surface temperature by internal climate variability. Nature Climate Change, 2015, 5, 555-559.	8.1	368
39	Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophysical Research Letters, 2015, 42, 90-95.	1.5	54
40	Volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 2014, 7, 185-189.	5.4	364
41	The Antarctic Sea Ice Response to the Ozone Hole in Climate Models. Journal of Climate, 2014, 27, 1336-1342.	1.2	57
42	Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer. Geophysical Research Letters, 2013, 40, 4054-4059.	1.5	20
43	The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophysical Research Letters, 2013, 40, 4328-4332.	1.5	114
44	Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophysical Research Letters, 2013, 40, 584-588.	1.5	73
45	Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophysical Research Letters, 2013, 40, 529-534.	1.5	118
46	Attribution of observed sea level pressure trends to greenhouse gas, aerosol, and ozone changes. Geophysical Research Letters, 2013, 40, 2302-2306.	1.5	86
47	Human influence on extratropical Southern Hemisphere summer precipitation. Geophysical Research Letters, 2012, 39, .	1.5	40
48	Ocean carbon uptake and storage influenced by wind bias in global climate models. Nature Climate Change, 2012, 2, 47-52.	8.1	22
49	Observed and simulated changes in the Southern Hemisphere surface westerly windâ€stress. Geophysical Research Letters, 2012, 39, .	1.5	253
50	Drivers of past and future Southern Ocean change: Stratospheric ozone versus greenhouse gas impacts. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	45
51	Skillful predictions of decadal trends in global mean surface temperature. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	39
52	Southern Ocean Response to Strengthening Winds in an Eddy-Permitting Global Climate Model. Journal of Climate, 2010, 23, 5332-5343.	1.2	47
53	Does the ocean impact the atmospheric response to stratospheric ozone depletion?. Geophysical Research Letters, 2010, 37, .	1.5	20
54	The role of poleward energy transport in Arctic temperature evolution. Geophysical Research Letters, 2010, 37, .	1.5	48

#	Article	IF	CITATIONS
55	Comparing variability and trends in observed and modelled globalâ€mean surface temperature. Geophysical Research Letters, 2010, 37, .	1.5	24
56	Has the ozone hole contributed to increased Antarctic sea ice extent? Geophysical Research Letters, $2010, 37, .$	1.5	115
57	Empirical Orthogonal Functions: The Medium is the Message. Journal of Climate, 2009, 22, 6501-6514.	1.2	209
58	On Annular Modes and Zonal Jets. Journal of Climate, 2008, 21, 1963-1978.	1.2	7
59	Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds. Geophysical Research Letters, 2007, 34, .	1.5	47
60	Anthropogenic speed-up of oceanic planetary waves. Geophysical Research Letters, 2007, 34, .	1.5	11
61	Northern Hemisphere circulation regimes: observed, simulated and predicted. Climate Dynamics, 2007, 28, 867-879.	1.7	11
62	Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophysical Research Letters, 2006, 33, .	1.5	191
63	Southern Ocean warming due to human influence. Geophysical Research Letters, 2006, 33, .	1.5	46
64	Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Climate Dynamics, 2006, 26, 713-728.	1.7	190
65	The effect of ocean mixing parametrisation on the enhanced CO2response of the Southern Hemisphere midlatitude jet. Geophysical Research Letters, 2005, 32, .	1.5	4
66	Effects of time averaging on climate regimes. Geophysical Research Letters, 2004, 31, .	1.5	15
67	The preferred structure of variability of the northern hemisphere atmospheric circulation. Geophysical Research Letters, 2001, 28, 1019-1022.	1.5	71
68	Arctic polar vortex variability in the Canadian middle atmosphere model. Atmosphere - Ocean, 2001, 39, 457-469.	0.6	7
69	The Arctic and Antarctic oscillations and their projected changes under global warming. Geophysical Research Letters, 1999, 26, 1601-1604.	1.5	384
70	Phaseâ€locked and asymmetric correlations of the wintertime atmospheric patterns with the ENSO. Atmosphere - Ocean, 1998, 36, 213-239.	0.6	30
71	Upperâ€boundary effects in a contour dynamics/surgery model of the polar stratospheric vortex. Atmosphere - Ocean, 1997, 35, 189-207.	0.6	4