
Chenglong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389298/publications.pdf

Version: 2024-02-01

CHENCLONG LL

#	Article	IF	CITATIONS
1	Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light: Science and Applications, 2020, 9, 31.	16.6	372
2	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie - International Edition, 2017, 56, 11525-11529.	13.8	293
3	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie - International Edition, 2016, 55, 15589-15593.	e 13.8	265
4	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie - International Edition, 2020, 59, 17442-17446.	13.8	242
5	Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers. Advanced Materials, 2021, 33, e2100652.	21.0	173
6	Highly Efficient Electroluminescent Materials with High Color Purity Based on Strong Acceptor Attachment onto B–N-Containing Multiple Resonance Frameworks. CCS Chemistry, 2022, 4, 2065-2079.	7.8	132
7	Improving the Efficiency of Red Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diode by Rational Isomer Engineering. Advanced Functional Materials, 2020, 30, 2002681.	14.9	121
8	Advances in perovskite photodetectors. InformaÄnÃ-Materiály, 2020, 2, 1247-1256.	17.3	107
9	Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System. Small, 2019, 15, e1903599.	10.0	101
10	Photomultiplication type organic photodetectors based on electron tunneling injection. Nanoscale, 2020, 12, 1091-1099.	5.6	99
11	High performance full color OLEDs based on a class of molecules with dual carrier transport channels and small singlet–triplet splitting. Chemical Communications, 2015, 51, 10632-10635.	4.1	88
12	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie - International Edition, 2022, 61, .	13.8	85
13	Efficient deep-blue OLEDs based on phenanthro[9,10-d]imidazole-containing emitters with AIE and bipolar transporting properties. Journal of Materials Chemistry C, 2016, 4, 10120-10129.	5.5	82
14	Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for Highâ€Efficiency Hybrid Warmâ€White OLEDs with Stable High Colorâ€Rendering Index. Advanced Functional Materials, 2018, 28, 1707002.	14.9	81
15	Purely Organic Phosphorescence Emitter-Based Efficient Electroluminescence Devices. Journal of Physical Chemistry Letters, 2019, 10, 5983-5988.	4.6	76
16	Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Doubleâ€ s ided Surface Passivation for Infrared Upconversion Detection. Small, 2020, 16, e2001534.	10.0	76
17	Induction of Strong Longâ€Lived Roomâ€Temperature Phosphorescence of <i>N</i> â€Phenylâ€2â€naphthylamin Molecules by Confinement in a Crystalline Dibromobiphenyl Matrix. Angewandte Chemie, 2016, 128, 15818-15822.	e 2.0	71
18	Construction of Efficient Deep-Red/Near-Infrared Emitter Based on a Large π-Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of over 20%. Journal of Physical Chemistry C, 2019, 123, 18585-18592.	3.1	70

CHENGLONG LI

#	Article	IF	CITATIONS
19	Novel Deepâ€Blue Hybridized Local and Chargeâ€Transfer Host Emitter for Highâ€Quality Fluorescence/Phosphor Hybrid Quasiâ€White Organic Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100704.	14.9	63
20	Recent advances on organicâ€inorganic hybrid perovskite photodetectors with fast response. InformaÄnÃ- Materiály, 2019, 1, 164-182.	17.3	61
21	Solutionâ€Processed Visibleâ€Blind Ultraviolet Photodetectors with Nanosecond Response Time and High Detectivity. Advanced Optical Materials, 2019, 7, 1900506.	7.3	60
22	Constructing Chargeâ€Transfer Excited States Based on Frontier Molecular Orbital Engineering: Narrowband Green Electroluminescence with High Color Purity and Efficiency. Angewandte Chemie, 2020, 132, 17595-17599.	2.0	54
23	Reversible Crystalâ€toâ€Crystal Phase Transitions with Highâ€Contrast Luminescent Alterations for a Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2021, 31, 2007511.	14.9	54
24	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie, 2017, 129, 11683-11687.	2.0	47
25	Donor–Acceptorâ€Type Organicâ€Smallâ€Moleculeâ€Based Solarâ€Energyâ€Absorbing Material for Highly Efficient Water Evaporation and Thermoelectric Power Generation. Advanced Functional Materials, 2021, 31, 2106247.	14.9	46
26	Nonsymmetrical Connection of Two Identical Building Blocks: Constructing Donor–Acceptor Molecules as Deep Blue Emitting Materials for Efficient Organic Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 842-847.	4.6	45
27	Structurally simple non-doped sky-blue OLEDs with high luminance and efficiencies at low driving voltages. Journal of Materials Chemistry C, 2017, 5, 1973-1980.	5.5	42
28	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie - International Edition, 2021, 60, 15335-15339.	13.8	40
29	Rational design of efficient orange-red to red thermally activated delayed fluorescence emitters for OLEDs with external quantum efficiency of up to 26.0% and reduced efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 1614-1622.	5.5	38
30	Donorâ€Acceptor Molecule Based Highâ€Performance Photothermal Organic Material for Efficient Water Purification and Electricity Generation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
31	An Organic Emitter Displaying Dual Emissions and Efficient Delayed Fluorescence White OLEDs. Advanced Optical Materials, 2019, 7, 1801667.	7.3	28
32	Non-doped luminescent material based organic light-emitting devices displaying high brightness under very low driving voltage. Journal of Materials Chemistry C, 2016, 4, 7013-7019.	5.5	26
33	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie, 0, , .	2.0	23
34	lsomer dependent molecular packing and carrier mobility of <i>N</i> -phenylcarbazole–phenanthro[9,10- <i>d</i>]imidazole based materials as hosts for efficient electrophosphorescence devices. Journal of Materials Chemistry C, 2019, 7, 13486-13492.	5.5	20
35	A twisted phenanthroimidazole based molecule with high triplet energy as a host material for high efficiency phosphorescent OLEDs. Journal of Materials Chemistry C, 2018, 6, 12888-12895.	5.5	18
36	Suppressing Efficiency Roll-Off of TADF Based OLEDs by Constructing Emitting Layer With Dual Delayed Fluorescence. Frontiers in Chemistry, 2019, 7, 302.	3.6	11

CHENGLONG LI

#	Article	IF	CITATIONS
37	Micro organic light-emitting diodes fabricated through area-selective growth. Materials Chemistry Frontiers, 2017, 1, 2606-2612.	5.9	10
38	Fluorine-Substituted Phenanthro[9,10-d]imidazole Derivatives with Optimized Charge-Transfer Characteristics for Efficient Deep-Blue Emitters. Organic Materials, 2020, 02, 011-019.	2.0	9
39	Ultrafast Photophysics of Multiple-Resonance Ultrapure Blue Emitters. Journal of Physical Chemistry B, 2022, 126, 2729-2739.	2.6	5
40	Thermally Stable and Highly Luminescent Green Emissive Fluorophores with Acenaphtho[1,2â€ <i>k</i>]fluoranthene Cores and Aromatic Amine Groups. ChemPlusChem, 2017, 82, 315-322.	2.8	4
41	Perovskite Photodetectors: Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Double‧ided Surface Passivation for Infrared Upconversion Detection (Small 26/2020). Small, 2020, 16, 2070146.	10.0	3
42	A Benzene Ringâ€Linked Dimethylamino and Borate Esterâ€Based Molecule and Organic Crystal: Efficient Dual Roomâ€Temperature Phosphorescence with Responsive Property. Advanced Optical Materials, 2022, 10, .	7.3	3
43	Highly Efficient Electrofluorescence Material Based on Pure Organic Phosphor Sensitization**. Angewandte Chemie, 2021, 133, 15463-15467.	2.0	2
44	High-performance non-doped pure-blue electroluminescent device based on bisphenanthroimidazole derivative with twisted donor-acceptor structure. Organic Electronics, 2021, 94, 106171.	2.6	1
45	Carbazole-benzonitrile based organic semiconductors: Synthesis, characterization and electroluminescent property. Organic Electronics, 2022, 102, 106445.	2.6	1
46	Donorâ€Acceptor Molecule Based High Performance Photothermal Organic Material for Efficient Waterâ€Electric Cogeneration. Angewandte Chemie, 0, , .	2.0	0
47	Structures and Photoluminescence Properties of Bis(aromatic amino)â€Based Isomers with Biphenyl as Bridge. ChemistrySelect, 2022, 7, .	1.5	0