Michael D Sheets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389208/publications.pdf

Version: 2024-02-01

430874 454955 1,539 31 18 30 citations h-index g-index papers 32 32 32 1682 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nature Communications, 2021, 12, 5482.	12.8	24
2	A single KH domain in Bicaudal-C links mRNA binding and translational repression functions to maternal development. Development (Cambridge), $2019,146,.$	2.5	11
3	Assaying NanoLuc Luciferase Activity from mRNA-Injected Xenopus Embryos. Methods in Molecular Biology, 2019, 1920, 33-39.	0.9	2
4	Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway. Cellular Signalling, 2018, 44, 1-9.	3.6	9
5	Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Reports, 2018, 24, 2248-2260.	6.4	24
6	Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. Advances in Experimental Medicine and Biology, 2017, 953, 49-82.	1.6	14
7	Horizontal Gel Electrophoresis for Enhanced Detection of Protein-RNA Complexes. Journal of Visualized Experiments, 2017, , .	0.3	6
8	A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development (Cambridge), 2016, 143, 864-71.	2. 5	17
9	Building the Future. Current Topics in Developmental Biology, 2015, 113, 233-270.	2.2	2
10	Determinants of RNA Binding and Translational Repression by the Bicaudal-C Regulatory Protein. Journal of Biological Chemistry, 2014, 289, 7497-7504.	3.4	19
11	Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. Rna, 2013, 19, 1575-1582.	3.5	22
12	Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochemical Journal, 2012, 445, 93-100.	3.7	28
13	Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Developmental Biology, 2012, 368, 231-241.	2.0	24
14	Enabling Xenopus oocytes and embryos to perform RNAi. FASEB Journal, 2012, 26, 199.2.	0.5	0
15	Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7844-7849.	7.1	56
16	Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in <i>Xenopus laevis</i> . Genes and Development, 2011, 25, 1121-1131.	5.9	79
17	Spatially Restricted Translation of the xCR1 mRNA in <i>Xenopus</i> Biology, 2009, 29, 3791-3802.	2.3	19
18	Deadenylation of maternal mRNAs mediated by miR-427 in <i>Xenopus laevis</i> embryos. Rna, 2009, 15, 2351-2363.	3. 5	146

#	Article	IF	Citations
19	Toward defining the phosphoproteome of <i>Xenopus laevis</i> embryos. Developmental Dynamics, 2009, 238, 1433-1443.	1.8	21
20	Structural basis for RNA recognition by a type II poly(A)-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15317-15322.	7.1	19
21	Chordin affects pronephros development inXenopus embryos by anteriorizing presomitic mesoderm. Developmental Dynamics, 2007, 236, 251-261.	1.8	13
22	Heading in a new direction: Implications of the revised fate map for understanding Xenopus laevis development. Developmental Biology, 2006, 296, 12-28.	2.0	33
23	BMP antagonism by Spemann's organizer regulates rostral–caudal fate of mesoderm. Developmental Biology, 2004, 275, 356-374.	2.0	23
24	Primitive and Definitive Blood Share a Common Origin in Xenopus: A Comparison of Lineage Techniques Used to Construct Fate Maps. Developmental Biology, 2002, 248, 52-67.	2.0	42
25	Regulation of the mRNAs Encoding Proteins of the BMP Signaling Pathway during the Maternal Stages of Xenopus Development. Developmental Biology, 2001, 236, 230-243.	2.0	28
26	The FGFR Pathway Is Required for the Trunk-Inducing Functions of Spemann's Organizer. Developmental Biology, 2001, 237, 295-305.	2.0	23
27	Human scFv antibody fragments specific for the epithelial tumour marker MUC-1, selected by phage display on living cells. Cancer Immunology, Immunotherapy, 2001, 50, 93-101.	4.2	38
28	Designation of the Anterior/Posterior Axis in Pregastrula Xenopus laevis. Developmental Biology, 2000, 225, 37-58.	2.0	64
29	Turning the frog into a princely model. Nature Biotechnology, 1998, 16, 233-234.	17.5	2
30	Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature, 1995, 374, 511-516.	27.8	233
31	Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylationin vitro. Nucleic Acids Research, 1990, 18, 5799-5805.	14.5	497