
Francis Rodier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biology, 2008, 6, e301.	2.6	3,067
2	Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 2009, 11, 973-979.	4.6	1,734
3	Four faces of cellular senescence. Journal of Cell Biology, 2011, 192, 547-556.	2.3	1,644
4	An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 2014, 31, 722-733.	3.1	1,376
5	A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells. PLoS ONE, 2009, 4, e6529.	1.1	805
6	MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging, 2009, 1, 402-411.	1.4	420
7	DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. Journal of Cell Science, 2011, 124, 68-81.	1.2	413
8	Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype. Journal of Biological Chemistry, 2011, 286, 36396-36403.	1.6	380
9	A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen. PLoS ONE, 2010, 5, e9188.	1.1	356
10	p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. Journal of Cell Biology, 2013, 201, 613-629.	2.3	344
11	Two faces of p53: aging and tumor suppression. Nucleic Acids Research, 2007, 35, 7475-7484.	6.5	328
12	Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Experimental Gerontology, 2016, 82, 39-49.	1.2	186
13	Glucocorticoids suppress selected components of the senescenceâ€associated secretory phenotype. Aging Cell, 2012, 11, 569-578.	3.0	172
14	The Polycomb Group Gene <i>Bmi1</i> Regulates Antioxidant Defenses in Neurons by Repressing <i>p53</i> Pro-Oxidant Activity. Journal of Neuroscience, 2009, 29, 529-542.	1.7	133
15	Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nature Communications, 2019, 10, 2556.	5.8	132
16	lonizing radiationâ€induced longâ€term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell, 2010, 9, 398-409.	3.0	131
17	Cancer and aging: the importance of telomeres in genome maintenance. International Journal of Biochemistry and Cell Biology, 2005, 37, 977-990.	1.2	122
18	The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 763-778.	1.3	112

FRANCIS RODIER

#	Article	IF	CITATIONS
19	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, 2019, 4, .	2.3	90
20	Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy, 2020, 16, 2004-2016.	4.3	89
21	DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Frontiers in Genetics, 2015, 6, 94.	1.1	83
22	Microarray analysis of gene expression mirrors the biology of an ovarian cancer model. Oncogene, 2001, 20, 6617-6626.	2.6	70
23	Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells' homeostasis. Oncotarget, 2016, 7, 13285-13296.	0.8	61
24	Premature aging/senescence in cancer cells facing therapy: good or bad?. Biogerontology, 2016, 17, 71-87.	2.0	60
25	Detection of the Senescence-Associated Secretory Phenotype (SASP). Methods in Molecular Biology, 2013, 965, 165-173.	0.4	51
26	Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. Journal of Cell Biology, 2008, 181, 447-460.	2.3	50
27	Therapeutic targeting of replicative immortality. Seminars in Cancer Biology, 2015, 35, S104-S128.	4.3	49
28	A Proinflammatory Secretome Mediates the Impaired Immunopotency of Human Mesenchymal Stromal Cells in Elderly Patients with Atherosclerosis. Stem Cells Translational Medicine, 2017, 6, 1132-1140.	1.6	46
29	DNA Damage- But Not Enzalutamide-Induced Senescence in Prostate Cancer Promotes Senolytic Bcl-xL Inhibitor Sensitivity. Cells, 2020, 9, 1593.	1.8	31
30	Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell, 2005, 4, 217-222.	3.0	26
31	Senolytic Targeting of Bcl-2 Anti-Apoptotic Family Increases Cell Death in Irradiated Sarcoma Cells. Cancers, 2021, 13, 386.	1.7	26
32	Ku80 Deletion Suppresses Spontaneous Tumors and Induces a p53-Mediated DNA Damage Response. Cancer Research, 2008, 68, 9497-9502.	0.4	23
33	p16 ^{INK4a} â€mediated suppression of telomerase in normal and malignant human breast cells. Aging Cell, 2010, 9, 736-746.	3.0	22
34	Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization. Scientific Reports, 2016, 6, 37391.	1.6	20
35	Four <scp>PTEN</scp> â€targeting coâ€expressed mi <scp>RNA</scp> s and <scp>ACTN</scp> 4―targeting mi <scp>R</scp> â€548b are independent prognostic biomarkers in human squamous cell carcinoma of the oral tongue. International Journal of Cancer, 2017, 141, 2318-2328.	2.3	20
36	Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP). Methods in Molecular Biology, 2019, 1896, 45-55.	0.4	20

FRANCIS RODIER

#	Article	IF	CITATIONS
37	ATM Suppresses SATB1-Induced Malignant Progression in Breast Epithelial Cells. PLoS ONE, 2012, 7, e51786.	1.1	20
38	Nonâ€canonical <scp>ATM</scp> / <scp>MRN</scp> activities temporally define the senescence secretory program. EMBO Reports, 2020, 21, e50718.	2.0	17
39	Cell cycle-dependent localization of CHK2 at centrosomes during mitosis. Cell Division, 2013, 8, 7.	1.1	16
40	Dual Inhibition of Autophagy and PI3K/AKT/MTOR Pathway as a Therapeutic Strategy in Head and Neck Squamous Cell Carcinoma. Cancers, 2020, 12, 2371.	1.7	14
41	mTOR as a senescence manipulation target: A forked road. Advances in Cancer Research, 2021, 150, 335-363.	1.9	14
42	Effect of Ku80 Deficiency on Mutation Frequencies and Spectra at a LacZ Reporter Locus in Mouse Tissues and Cells. PLoS ONE, 2008, 3, e3458.	1.1	13
43	Necdin, a p53-Target Gene, Is an Inhibitor of p53-Mediated Growth Arrest. PLoS ONE, 2012, 7, e31916.	1.1	11
44	UM171-Expanded Cord Blood Transplants Support Robust T Cell Reconstitution with Low Rates of Severe Infections. Transplantation and Cellular Therapy, 2021, 27, 76.e1-76.e9.	0.6	11
45	Abstract 4652: The autophagy-senescence connection in chemotherapy of breast tumor cells; senescence accelerated by autophagy but not dependent on autophagy. Cancer Research, 2012, 72, 4652-4652.	0.4	11
46	Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures. Methods in Molecular Biology, 2019, 2045, 93-105.	0.4	10
47	Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence. Nucleic Acids Research, 2021, 49, 11690-11707.	6.5	10
48	Polyomavirus large T-antigen protects mouse cells from Fas-, TNF-α- and taxol-induced apoptosis. Oncogene, 2000, 19, 6261-6270.	2.6	9
49	Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress. BMC Cancer, 2012, 12, 234.	1.1	7
50	Manipulating senescence in health and disease: emerging tools. Cell Cycle, 2015, 14, 1613-1614.	1.3	7
51	When DNA damage goes invisible. Cell Cycle, 2009, 8, 3631-3635.	1.3	6
52	Cellular senescence, geroscience, cancer and beyond. Aging, 2018, 10, 2233-2242.	1.4	6
53	NCOR1 Sustains Colorectal Cancer Cell Growth and Protects against Cellular Senescence. Cancers, 2021, 13, 4414.	1.7	5
54	UM171-Expanded Cord Blood Transplants Support Robust T-Cell Reconstitution with Low Rates of Severe Infections. Blood, 2020, 136, 36-37.	0.6	2

FRANCIS RODIER

#	Article	IF	CITATIONS
55	Targeting IKKε in Androgen-Independent Prostate Cancer Causes Phenotypic Senescence and Genomic Instability. Molecular Cancer Therapeutics, 2022, 21, 407-418.	1.9	2
56	Sensitive molecular detection of small nodal metastasis in uterine cervical cancer using HPV16-E6/CK19/MUC1 cancer biomarkers. Oncotarget, 2018, 9, 21641-21654.	0.8	1
57	Abstract A3: p53-dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. , 2011, , .		Ο
58	p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. Journal of Experimental Medicine, 2013, 210, i3-i3.	4.2	0
59	Cell biology and carcinogenesis in older people. , 2017, , 691-698.		Ο
60	The rs6942067 genotype is associated with a worse overall survival in young or non-smoking HPV-negative patients with positive nodal status in head and neck squamous cell carcinoma. Oral Oncology, 2022, 125, 105696.	0.8	0