Baljit Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389086/publications.pdf

Version: 2024-02-01

105 papers	4,952 citations	36 h-index	98798 67 g-index
105	105	105	5347
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of arabinoxylan-bis[2-(methacryloyloxy)ethyl] phosphate crosslinked copolymer network by high energy gamma radiation for use in controlled drug delivery applications. International Journal of Biological Macromolecules, 2022, 200, 206-217.	7.5	6
2	Development and characterization of azadirachta indica gum-poly(2-hydroxyethyl methacrylate) crosslinked co-polymeric hydrogels for drug delivery applications. Chemical Physics Letters, 2022, 792, 139401.	2.6	6
3	Development of dietary fiber psyllium based hydrogel for use in drug delivery applications. Food Hydrocolloids for Health, 2022, 2, 100059.	3.9	5
4	Synthesis of hydrocortisone containing dietary fiber almond gum-based hydrogels as sustained drug delivery carriers for use in colon inflammation. Food Hydrocolloids for Health, 2022, 2, 100057.	3.9	5
5	Development of dietary fibre moringa gum and polyvinylpyrrolidone based hydrogels for drug delivery application. Food Hydrocolloids for Health, 2021, 1, 100008.	3.9	4
6	Design of dietary fiber azadiracta indica gum based hydrogels for use in drug delivery. Food Hydrocolloids for Health, $2021, 1, 100011$.	3.9	0
7	Gamma radiation formation of sterculia gum-alginate-carbopol hydrogel dressing by grafting method for use in brain drug delivery. Chemical Physics Letters, 2021, 779, 138875.	2.6	13
8	Application of tragacanth gum and alginate in hydrogel wound dressing's formation using gamma radiation. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100058.	2.6	6
9	Designing moringa gum-sterculia gum-polyacrylamide hydrogel wound dressings for drug delivery applications. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100062.	2.6	12
10	Dietary fiber tragacanth gum based hydrogels for use in drug delivery applications. Bioactive Carbohydrates and Dietary Fibre, 2020, 21, 100208.	2.7	18
11	Radiation induced graft copolymerization of graphene oxide and carbopol onto sterculia gum polysaccharide to develop hydrogels for biomedical applications. FlatChem, 2020, 19, 100151.	5.6	14
12	Synthesis and characterization of the azadirachta indica gum–polyacrylamide interpenetrating network for biomedical applications. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100017.	2.6	6
13	Exploration of arabinogalactan of gum polysaccharide potential in hydrogel formation and controlled drug delivery applications. International Journal of Biological Macromolecules, 2020, 147, 482-492.	7.5	25
14	Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. International Journal of Biological Macromolecules, 2020, 148, 248-257.	7.5	39
15	Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications. Carbohydrate Research, 2020, 489, 107949.	2.3	40
16	Graft copolymerization of polyvinylpyrollidone onto Azadirachta indica gum polysaccharide in the presence of crosslinker to develop hydrogels for drug delivery applications. International Journal of Biological Macromolecules, 2020, 159, 264-275.	7.5	24
17	Synthesis and Characterization of Psyllium Polysaccharide–Poly(2-hydroxypropyl) Tj ETQq1 1 0.784314 rgBT / Science - Series B, 2020, 62, 685-696.	Overlock 1 0.8	10 Tf 50 107 T O
18	Designing biocompatible sterile organogel–bigel formulations for drug delivery applications using green protocol. New Journal of Chemistry, 2019, 43, 3059-3070.	2.8	23

#	Article	IF	Citations
19	Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations. International Journal of Biological Macromolecules, 2019, 127, 450-459.	7.5	11
20	Polysaccharides Sterculia Gum/Psyllium Based Hydrogel Dressings for Drug Delivery Applications. Polymer Science - Series A, 2019, 61, 865-874.	1.0	7
21	Network formation of Moringa oleifera gum by radiation induced crosslinking: Evaluation of drug delivery, network parameters and biomedical properties. International Journal of Biological Macromolecules, 2018, 108, 477-488.	7.5	41
22	Radiation-induced graft copolymerization of N‑vinyl imidazole onto moringa gum polysaccharide for making hydrogels for biomedical applications. International Journal of Biological Macromolecules, 2018, 120, 1369-1378.	7.5	22
23	Hydrogel formation by radiation induced crosslinked copolymerization of acrylamide onto moringa gum for use in drug delivery applications. Carbohydrate Polymers, 2018, 200, 262-270.	10.2	29
24	Modification of Dietary Fiber Psyllium with Poly(vinyl pyrrolidone) through Network Formation for Use in Slow Drug Delivery Application. Polymer Science - Series B, 2018, 60, 331-348.	0.8	3
25	Gamma radiation synthesis and characterization of gentamicin loaded polysaccharide gum based hydrogel wound dressings. Journal of Drug Delivery Science and Technology, 2018, 47, 200-208.	3.0	25
26	Modification of sterculia gum polysaccharide via network formation by radiation induced crosslinking polymerization for biomedical applications. International Journal of Biological Macromolecules, 2018, 116, 91-99.	7.5	19
27	Acacia gum polysaccharide based hydrogel wound dressings: Synthesis, characterization, drug delivery and biomedical properties. Carbohydrate Polymers, 2017, 165, 294-303.	10.2	84
28	Designing sterile biocompatible moxifloxacin loaded trgacanth-PVA-alginate wound dressing by radiation crosslinking method. Wound Medicine, 2017, 17, 11-17.	2.7	21
29	Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiation Physics and Chemistry, 2017, 135, 94-105.	2.8	50
30	Influence of graphene-oxide nanosheets impregnation on properties of sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization. International Journal of Biological Macromolecules, 2017, 99, 699-712.	7.5	37
31	Radiation formation of psyllium cross-linked poly(hydroxyethylmethacrylate)-co-poly(acrylamide) based sterile hydrogels for drug delivery applications. Polymer Science - Series A, 2017, 59, 363-375.	1.0	3
32	Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydrate Polymers, 2017, 157, 185-195.	10.2	70
33	Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels. Current Drug Delivery, 2017, 14, 981-991.	1.6	11
34	Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications. International Journal of Biological Macromolecules, 2016, 88, 586-602.	7.5	72
35	Radiation formation of functionalized polysaccharide-protein based skin mimicking semi- inter penetrating network for biomedical application. International Journal of Biological Macromolecules, 2016, 92, 1136-1150.	7.5	14
36	Evaluation of network parameters and drug release behavior of gum acacia-crosslinked-carbopol hydrogel wound dressings. Polymer Science - Series A, 2016, 58, 754-764.	1.0	4

#	Article	IF	CITATIONS
37	Sterculia Gum. , 2016, , 7601-7609.		O
38	Design of Acacia Gum–Carbopol–Cross-Linked-Polyvinylimidazole Hydrogel Wound Dressings for Antibiotic/Anesthetic Drug Delivery. Industrial & Engineering Chemistry Research, 2016, 55, 9176-9188.	3.7	45
39	Slow release of ciprofloxacin from \hat{l}^2 - cyclodextrin containing drug delivery system through network formation and supramolecular interactions. International Journal of Biological Macromolecules, 2016, 92, 390-400.	7.5	31
40	Designing galacturonic acid /arabinogalactan crosslinked poly(vinyl pyrrolidone)-co-poly(2-acrylamido-2-methylpropane sulfonic acid) polymers: Synthesis, characterization and drug delivery application. Polymer, 2016, 91, 50-61.	3.8	17
41	Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties. RSC Advances, 2015, 5, 44666-44678.	3.6	52
42	Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. International Journal of Plastics Technology, 2015, 19, 263-274.	3.1	24
43	Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 2015, 35, 47-66.	5.3	238
44	Polysaccharide based hydrogels as controlled drug delivery system for GIT cancer. International Journal of Biological Macromolecules, 2014, 65, 524-533.	7. 5	41
45	Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydrate Polymers, 2014, 101, 928-940.	10.2	133
46	Design of sterile mucoadhesive hydrogels for use in drug delivery: Effect of radiation on network structure. Colloids and Surfaces B: Biointerfaces, 2014, 121, 230-237.	5.0	20
47	Correlation Study of Structural Parameters of Bioadhesive Polymers in Designing a Tunable Drug Delivery System. Langmuir, 2014, 30, 8580-8591.	3.5	17
48	Development of hydrogels by radiation induced polymerization for use in slow drug delivery. Radiation Physics and Chemistry, 2014, 103, 178-187.	2.8	19
49	Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. International Journal of Pharmaceutics, 2013, 457, 82-91.	5.2	138
50	Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides. Radiation Physics and Chemistry, 2013, 92, 112-120.	2.8	18
51	Environment friendly agar and alginate-based thiram delivery system. Toxicological and Environmental Chemistry, 2013, 95, 567-578.	1.2	17
52	Design of Radiation Crosslinked Psyllium and Binary Monomers-Based Hydrogels for Use in Colon Drug Delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 68-75.	3.4	9
53	Design of Aloe Vera-Alginate Gastroretentive Drug Delivery System to Improve the Pharmacotherapy. Polymer-Plastics Technology and Engineering, 2012, 51, 1303-1314.	1.9	15
54	In vitro release profile of anti-ulcer drug rabeprazole from biocompatible psyllium-PVA hydrogels. Journal of Materials Science: Materials in Medicine, 2012, 23, 1021-1032.	3.6	10

#	Article	IF	CITATIONS
55	Design of dietary polysaccharide and binary monomer mixture of acrylamide and 2-acrylamido-2-methylpropane sulphonic acid based antiviral drug delivery devices. Chemical Engineering Research and Design, 2012, 90, 346-358.	5.6	15
56	Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: Mechanical, mucoadhesive, biocompatible and permeability properties. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 9-21.	3.1	125
57	Barium Ions Crosslinked Alginate and Sterculia Gum-Based Gastroretentive Floating Drug Delivery System for Use in Peptic Ulcers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 684-705.	3.4	31
58	Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. International Journal of Biological Macromolecules, 2011, 48, 501-510.	7. 5	101
59	Design of Molecular Imprinted Hydrogels for Controlled Release of Cisplatin: Evaluation of Network Density of Hydrogels. Industrial & Engineering Chemistry Research, 2011, 50, 13742-13751.	3.7	37
60	Slow release of ciprofloxacin from double potential drug delivery system. Journal of Materials Science, 2011, 46, 2587-2599.	3.7	10
61	Synthesis of smart hydrogels by radiation polymerisation for use as slow drug delivery devices. Canadian Journal of Chemical Engineering, 2011, 89, 1596-1605.	1.7	5
62	Formation of sterculia polysaccharide networks by gamma rays induced graft copolymerization for biomedical applications. Carbohydrate Polymers, 2011, 86, 1371-1380.	10.2	36
63	Design of sterculia gum based double potential antidiarrheal drug delivery system. Colloids and Surfaces B: Biointerfaces, 2011, 82, 325-332.	5.0	29
64	Applications of natural polysaccharide-based beads for slow release herbicide formulation. Toxicological and Environmental Chemistry, 2011, 93, 616-622.	1.2	9
65	Dietary fiber psyllium based hydrogels for use in insulin delivery. International Journal of Diabetes Mellitus, 2010, 2, 32-37.	0.6	22
66	Development of a new controlled pesticide delivery system based on neem leaf powder. Journal of Hazardous Materials, 2010, 177, 290-299.	12.4	48
67	Design of psyllium–PVA–acrylic acid based novel hydrogels for use in antibiotic drug delivery. International Journal of Pharmaceutics, 2010, 389, 94-106.	5.2	55
68	Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chemical Engineering Research and Design, 2010, 88, 997-1012.	5.6	82
69	Release dynamics of tyrosine from dietary fiber psyllium based hydrogels for use in Parkinson's disease. Food Research International, 2010, 43, 1065-1072.	6.2	11
70	Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards. Applied Clay Science, 2010, 47, 384-391.	5.2	43
71	Induction of Biodegradability in the Plastic Waste Through Graft Copolymerization. Polymer-Plastics Technology and Engineering, 2009, 48, 1324-1332.	1.9	2
72	Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocolloids, 2009, 23, 928-935.	10.7	56

#	Article	IF	Citations
73	A study towards release dynamics of thiram fungicide from starch–alginate beads to control environmental and health hazards. Journal of Hazardous Materials, 2009, 161, 208-216.	12.4	61
74	Mechanistic Implication for Cross-Linking in Sterculia-Based Hydrogels and Their Use in GIT Drug Delivery. Biomacromolecules, 2009, 10, 2515-2532.	5.4	63
75	Synthesis and Characterization of Sterculia Gum Based pH Responsive Drug Delivery System for Use in Colon Cancer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 381-396.	2.2	7
76	Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Applied Clay Science, 2009, 45, 76-82.	5.2	128
77	Radiation crosslinked polymerization of methacrylamide and psyllium to develop antibiotic drug delivery device. International Journal of Biological Macromolecules, 2009, 45, 338-347.	7.5	14
78	The controlled and sustained release of a fungicide from starch and alginate beads. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 113-122.	1.5	16
79	InÂvitro release dynamics of model drugs from psyllium and acrylic acid based hydrogels for the use in colon specific drug delivery. Journal of Materials Science: Materials in Medicine, 2008, 19, 2771-2780.	3.6	17
80	Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 2008, 93, 561-584.	5.8	1,067
81	In vitro release dynamics of thiram fungicide from starch and poly(methacrylic acid)-based hydrogels. Journal of Hazardous Materials, 2008, 154, 278-286.	12.4	63
82	Radiation crosslinked psyllium and polyacrylic acid based hydrogels for use in colon specific drug delivery. Carbohydrate Polymers, 2008, 73, 446-455.	10.2	37
83	Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydrate Polymers, 2008, 74, 489-497.	10.2	53
84	Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems. Acta Biomaterialia, 2008, 4, 1244-1254.	8.3	76
85	Development of sterculia gum based wound dressings for use in drug delivery. European Polymer Journal, 2008, 44, 3222-3230.	5.4	94
86	Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2009-2020.	1.4	45
87	Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3417-3430.	1.4	32
88	Psyllium and copolymers of 2-hydroxylethylmethacrylate and acrylamide-based novel devices for the use in colon specific antibiotic drug delivery. International Journal of Pharmaceutics, 2008, 352, 74-80.	5.2	29
89	Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. International Journal of Biological Macromolecules, 2008, 43, 142-150.	7.5	35
90	Molecular Imprinted Polymers for use as Drug Delivery Devices: Preliminary Evaluation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 776-784.	2.2	9

#	Article	IF	CITATIONS
91	Controlled release of thiram fungicide from starch-based hydrogels. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 677-695.	1.5	21
92	Synthesis, characterization and swelling responses of pH sensitive psyllium and polyacrylamide based hydrogels for the use in drug delivery (I). Carbohydrate Polymers, 2007, 67, 190-200.	10.2	102
93	The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (II). Carbohydrate Polymers, 2007, 67, 559-565.	10.2	54
94	Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohydrate Polymers, 2007, 69, 631-643.	10.2	76
95	Psyllium as therapeutic and drug delivery agent. International Journal of Pharmaceutics, 2007, 334, 1-14.	5.2	299
96	Optimized synthesis and characterization of polystyrene graft copolymers and preliminary assessment of their biodegradability and application in water pollution alleviation technologies. Polymer Degradation and Stability, 2007, 92, 876-885.	5.8	31
97	Metal ion sorption and swelling studies of psyllium and acrylic acid based hydrogels. Carbohydrate Polymers, 2006, 64, 50-56.	10.2	57
98	The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels. International Journal of Pharmaceutics, 2006, 325, 15-25.	5.2	48
99	A study of the synthesis, kinetics, and characterization of reactive graft copolymers of poly(vinyl) Tj ETQq1 1 0.7 Applied Polymer Science, 2006, 100, 1522-1530.	84314 rgE 2.6	T /Overlock 11
100	Synthesis and characterization of N-vinyl pyrrolidone and cellulosics based functional graft copolymers for use as metal ions and iodine sorbents. Journal of Applied Polymer Science, 2005, 98, 373-382.	2.6	22
101	Synthesis and Characterization of Reactive Graft Copolymers of Poly(butyl Acrylate) and Cellulose. Polymers and Polymer Composites, 2005, 13, 467-478.	1.9	5
102	Modification of Tefzel film through graft copolymerization. Polymer International, 2004, 53, 1572-1580.	3.1	1
103	Functionalization of poly(4-vinyl pyridine) grafted cellulose by quaternization reactions and a study on the properties of postquaternized copolymers. Journal of Applied Polymer Science, 2004, 91, 2454-2464.	2.6	40
104	Functionalization of poly(tetrafluoroethylene-co-ethylene) film by radiation-induced graft copolymerization. Journal of Applied Polymer Science, 2000, 78, 1171-1178.	2.6	9
105	Synthesis and Characterization of Arabinoxylan Psyllium Mucilage-2-methacryloyloxyethyl Trimethylammonium Chloride Copolymeric Hydrogel by Gamma Radiation for Use in Drug Delivery Applications. Polymer Science - Series B, 0, , $1.$	0.8	0