
Isaac Guedi Capeluto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8389046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy, 2001, 24, 445-452.	4.3	180
2	Strategic decision-making for intelligent buildings: Comparative impact of passive design strategies and active features in a hot climate. Building and Environment, 2008, 43, 1829-1839.	3.0	99
3	Evaluating visual comfort and performance of three natural lighting systems for deep office buildings in highly luminous climates. Building and Environment, 2006, 41, 1128-1135.	3.0	88
4	Climatic considerations in school building design in the hot–humid climate for reducing energy consumption. Applied Energy, 2009, 86, 340-348.	5.1	86
5	Advice tool for early design stages of intelligent facades based on energy and visual comfort approach. Energy and Buildings, 2009, 41, 480-488.	3.1	85
6	Energy performance of the self-shading building envelope. Energy and Buildings, 2003, 35, 327-336.	3.1	81
7	On the use of â€~solar volume' for determining the urban fabric. Solar Energy, 2001, 70, 275-280.	2.9	56
8	The influence of the urban environment on the availability of daylighting in office buildings in Israel. Building and Environment, 2003, 38, 745-752.	3.0	50
9	Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system. Energy, 2014, 76, 375-384.	4.5	43
10	Rationalization methods in computer aided fabrication: A critical review. Automation in Construction, 2018, 90, 281-293.	4.8	40
11	Design guidelines for appropriate insolation of urban squares. Renewable Energy, 2006, 31, 1011-1023.	4.3	39
12	External shading in buildings: comparative analysis of daylighting performance in static and kinetic operation scenarios. Architectural Science Review, 2017, 60, 126-136.	1.1	38
13	Decision methodology for the development of an expert system applied in an adaptable energy retrofit façade system for residential buildings. Renewable Energy, 2015, 78, 498-508.	4.3	24
14	Solar potential in existing urban layouts—Critical overview of the existing building stock in Slovenian context. Energy Policy, 2014, 69, 443-456.	4.2	23
15	A method for the generation of climate-based, context-dependent parametric solar envelopes. Architectural Science Review, 2017, 60, 395-407.	1.1	18
16	Adaptability in envelope energy retrofits through addition of intelligence features. Architectural Science Review, 2019, 62, 216-229.	1.1	16
17	Computer-Based Form Generation in Architectural Design — A Critical Review. International Journal of Architectural Computing, 2009, 7, 535-553.	0.9	14
18	Climate change and health in Israel: adaptation policies for extreme weather events. Israel Journal of Health Policy Research, 2013, 2, 23.	1.4	14

ISAAC GUEDI CAPELUTO

#	Article	IF	CITATIONS
19	Simulations and knowledge-based computer-aided architectural design (CAAD) systems for passive and low energy architecture. Energy and Buildings, 1996, 23, 257-269.	3.1	12
20	Non-Linear Architectural Design Process. International Journal of Architectural Computing, 2010, 8, 41-53.	0.9	12
21	A methodology for the qualitative analysis of winds: natural ventilation as a strategy for improving the thermal comfort in open spaces. Building and Environment, 2005, 40, 175-181.	3.0	11
22	From Form-Based to Performance-Based Codes. Sustainability, 2020, 12, 5657.	1.6	10
23	Evaluating the Influence of Varied External Shading Elements on Internal Daylight Illuminances. Buildings, 2020, 10, 22.	1.4	8
24	An energetic profile for greener buildings. Sustainable Cities and Society, 2020, 61, 102171.	5.1	7
25	Energy Rating of Buildings to Promote Energy-Conscious Design in Israel. Buildings, 2021, 11, 59.	1.4	7
26	Towards zero-energy residential complexes in high-density conditions. Indoor and Built Environment, 2021, 30, 1751-1765.	1.5	6
27	Intelligent Envelopes for High-Performance Buildings. Green Energy and Technology, 2017, , .	0.4	5
28	What Is a Real Intelligent Envelope?. Green Energy and Technology, 2017, , 1-20.	0.4	5
29	The Solar Block Generator: an additive parametric method for solar driven urban block design. Journal of Physics: Conference Series, 2021, 2042, 012049.	0.3	5
30	A Model for the Energetic-Economic Optimization of Office Buildings. Architectural Science Review, 2007, 50, 331-339.	1.1	3
31	Light restoration proposal for the Ein Harod Museum of Art. Architectural Science Review, 2015, 58, 300-313.	1.1	0
32	Design Considerations. Green Energy and Technology, 2017, , 51-79.	0.4	0
33	Application Examples. Green Energy and Technology, 2017, , 107-128.	0.4	0
34	Design Tools. Green Energy and Technology, 2017, , 81-105.	0.4	0