Angela Ianaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8388061/publications.pdf

Version: 2024-02-01

304368 315357 39 1,878 22 38 h-index citations g-index papers 39 39 39 3044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibitory effects of cynaropicrin on human melanoma progression by targeting <scp>MAPK</scp> , <scp>NFâ€PB,</scp> and Nrfâ€2 signaling pathways in vitro. Phytotherapy Research, 2021, 35, 1432-1442.	2.8	24
2	PPARÉ£ drives IL-33-dependent ILC2 pro-tumoral functions. Nature Communications, 2021, 12, 2538.	5.8	44
3	Modulation of the functions of myeloidâ€derived suppressor cells : a new strategy of hydrogen sulfide antiâ€eancer effects. British Journal of Pharmacology, 2020, 177, 884-897.	2.7	22
4	Olive Leaf Extract, from Olea europaea L., Reduces Palmitate-Induced Inflammation via Regulation of Murine Macrophages Polarization. Nutrients, 2020, 12, 3663.	1.7	20
5	The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Frontiers in Immunology, 2020, 11, 1680.	2.2	194
6	Immunosuppressive Mediators Impair Proinflammatory Innate Lymphoid Cell Function in Human Malignant Melanoma. Cancer Immunology Research, 2020, 8, 556-564.	1.6	21
7	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells., 2019, 7, 257.		120
8	Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Frontiers in Pharmacology, 2019, 10, 66.	1.6	22
9	Knockdown of PTGS2 by CRISPR/CAS9 System Designates a New Potential Gene Target for Melanoma Treatment. Frontiers in Pharmacology, 2019, 10, 1456.	1.6	16
10	New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Marine Drugs, 2019, 17, 31.	2.2	61
11	Nutraceuticals: opening the debate for a regulatory framework. British Journal of Clinical Pharmacology, 2018, 84, 659-672.	1.1	246
12	NMR-based phytochemical analysis of Vitis vinifera cv Falanghina leaves. Characterization of a previously undescribed biflavonoid with antiproliferative activity. Fìtoterapìâ, 2018, 125, 13-17.	1.1	17
13	Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression. Phytomedicine, 2018, 50, 19-24.	2.3	32
14	Hydrogen Sulfide Reduces Myeloid-Derived Suppressor Cell-Mediated Inflammatory Response in a Model of Helicobacter hepaticus-Induced Colitis. Frontiers in Immunology, 2018, 9, 499.	2.2	27
15	MicroRNA-143-3p inhibits growth and invasiveness of melanoma cells by targeting cyclooxygenase-2 and inversely correlates with malignant melanoma progression. Biochemical Pharmacology, 2018, 156, 52-59.	2.0	24
16	COX-2 expression positively correlates with PD-L1 expression in human melanoma cells. Journal of Translational Medicine, 2017, 15, 46.	1.8	85
17	Preclinical evaluation of the urokinase receptor-derived peptide UPARANT as an anti-inflammatory drug. Inflammation Research, 2017, 66, 701-709.	1.6	11
18	Antiproliferative metabolites from the Northern African endemic plant Daucus virgatus (Apiaceae). Phytochemistry, 2017, 143, 194-198.	1.4	9

#	Article	IF	CITATIONS
19	Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Digestive Diseases and Sciences, 2017, 62, 2223-2230.	1.1	44
20	The Hydrogen Sulfide Releasing Molecule Acetyl Deacylasadisulfide Inhibits Metastatic Melanoma. Frontiers in Pharmacology, 2017, 8, 65.	1.6	22
21	Profound Chemopreventative Effects of a Hydrogen Sulfide-Releasing NSAID in the APCMin/+ Mouse Model of Intestinal Tumorigenesis. PLoS ONE, 2016, 11, e0147289.	1.1	21
22	Cystathionine \hat{l}^2 -synthase-derived hydrogen sulfide is involved in human malignant hyperthermia. Clinical Science, 2016, 130, 35-44.	1.8	19
23	Hydrogen sulfide-releasing anti-inflammatory drugs for chemoprevention and treatment of cancer. Pharmacological Research, 2016, 111, 652-658.	3.1	25
24	ATB-346, a novel hydrogen sulfide-releasing anti-inflammatory drug, induces apoptosis of human melanoma cells and inhibits melanoma development in vivo. Pharmacological Research, 2016, 114, 67-73.	3.1	65
25	Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival. Oncotarget, 2016, 7, 57077-57085.	0.8	34
26	Gaseous mediators in resolution of inflammation. Seminars in Immunology, 2015, 27, 227-233.	2.7	86
27	Role of the cystathionine $\langle i \rangle \hat{l}^3 \langle i \rangle$ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell and Melanoma Research, 2015, 28, 61-72.	1.5	110
28	Human Cystathionine- \hat{l}^2 -Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium. PLoS ONE, 2015, 10, e0136859.	1.1	22
29	Indicaxanthin from Cactus Pear Fruit Exerts Anti-Inflammatory Effects in Carrageenin-Induced Rat Pleurisy. Journal of Nutrition, 2014, 144, 185-192.	1.3	67
30	NEMO-binding domain peptide inhibits proliferation of human melanoma cells. Cancer Letters, 2009, 274, 331-336.	3.2	30
31	2-Cyclopenten-1-one and prostaglandin J2 reduce restenosis after balloon angioplasty in rats: role of NF-I°B. FEBS Letters, 2003, 553, 21-27.	1.3	16
32	Anti-Inflammatory Activity of 15-Deoxy-Δ12,14-PGJ2and 2-Cyclopenten-1-one: Role of the Heat Shock Response. Molecular Pharmacology, 2003, 64, 85-93.	1.0	54
33	HSF1/hsp72 pathway as an endogenous anti-inflammatory system. FEBS Letters, 2001, 499, 239-244.	1.3	39
34	Role of cyclopentenone prostaglandins in rat carrageenin pleurisy. FEBS Letters, 2001, 508, 61-66.	1.3	47
35	Role of nuclear factor-κB in a rat model of vascular injury. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 343-350.	1.4	10
36	Transcription factor decoy oligodeoxynucleotides to nuclear factor-κB inhibit reverse passive Arthus reaction in rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 422-429.	1.4	5

Angela Ianaro

#	Article	IF	CITATIONS
37	Synthesis of novel anti-inflammatory peptides derived from the amino-acid sequence of the bioactive protein SV-IV. FEBS Journal, 2001, 268, 3399-3406.	0.2	22
38	Nitric oxide inhibits neutrophil infiltration in the reverse passive Arthus reaction in rat skin. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 489-495.	1.4	13
39	Modulation by nitric oxide of prostaglandin biosynthesis in the rat. British Journal of Pharmacology, 1995, 114, 323-328.	2.7	132