Mei-Liang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/83878/publications.pdf

Version: 2024-02-01

201385 189595 2,783 66 27 50 citations h-index g-index papers 67 67 67 2716 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acceleration of the genetic gain for nutraceutical improvement of adlay (<i>Coix</i> L.) through genomic approaches: current status and future prospects. Food Reviews International, 2023, 39, 5377-5401.	4.3	2
2	Tartary Buckwheat: An Under-utilized Edible and Medicinal Herb for Food and Nutritional Security. Food Reviews International, 2022, 38, 440-454.	4.3	32
3	MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in <i>Lotus japonicus</i> . Journal of Experimental Botany, 2022, 73, 2650-2665.	2.4	12
4	Buckwheat in Tissue Culture Research: Current Status and Future Perspectives. International Journal of Molecular Sciences, 2022, 23, 2298.	1.8	9
5	Metal Tolerance Protein Encoding Gene Family in Fagopyrum tartaricum: Genome-Wide Identification, Characterization and Expression under Multiple Metal Stresses. Plants, 2022, 11, 850.	1.6	3
6	Rutin Promotes Pancreatic Cancer Cell Apoptosis by Upregulating miRNA-877-3p Expression. Molecules, 2022, 27, 2293.	1.7	8
7	Identification of Tartary Buckwheat Varieties Suitable for Forage via Nutrient Value Analysis at Different Growth Stages. International Journal of Plant Biology, 2022, 13, 31-43.	1.1	O
8	Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat (Fagopyrum esculentum). Plants, 2022, 11, 742.	1.6	6
9	Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. New Phytologist, 2022, 234, 1583-1597.	3.5	23
10	<scp>JA</scp> â€induced FtBPM3 accumulation promotes <scp>FtERFâ€EAR3</scp> degradation and rutin biosynthesis in Tartary buckwheat. Plant Journal, 2022, 111, 323-334.	2.8	10
11	Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist, 2022, 235, 1927-1943.	3.5	18
12	Roles of Arbuscular mycorrhizal Fungi as a Biocontrol Agent in the Control of Plant Diseases. Microorganisms, 2022, 10, 1266.	1.6	43
13	Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry, 2021, 335, 127653.	4.2	117
14	First Report of <i>Nigrospora osmanthi</i> Causing Leaf Spot on Tartary Buckwheat in China. Plant Disease, 2021, 105, 1227-1227.	0.7	4
15	First Report of <i>Rhizoctonia solani</i> AG-4 HGI Causing Stem Canker on <i>Fagopyrum tataricum</i> (Tartary Buckwheat) in China. Plant Disease, 2021, 105, 505-505.	0.7	5
16	Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22, 23.	3.8	69
17	Fagopyrum longistylum (Polygonaceae), a new species from Sichuan, China . Phytotaxa, 2021, 482, 173-182.	0.1	7
18	Streptomyces liangshanensis sp. nov., a novel actinomycete isolated from rhizosphere soil of Fagopyrum tataricum. Archives of Microbiology, 2021, 203, 3055-3059.	1.0	6

#	Article	IF	Citations
19	FtBPM3 modulates the orchestration of FtMYB11â€mediated flavonoids biosynthesis in Tartary buckwheat. Plant Biotechnology Journal, 2021, 19, 1285-1287.	4.1	14
20	First Report of <i>Alternaria alternata</i> Causing Leaf Spot of Tartary Buckwheat in China. Plant Disease, 2021, 105, 3751.	0.7	O
21	Elucidation of the Regulatory Network of Flavonoid Biosynthesis by Profiling the Metabolome and Transcriptome in Tartary Buckwheat. Journal of Agricultural and Food Chemistry, 2021, 69, 7218-7229.	2.4	25
22	Ubiquitin Proteins and the Orchestration of Transcription Factors Activity. Critical Reviews in Plant Sciences, 2021, 40, 366-377.	2.7	1
23	Jasmonic acid-responsive RRTF1 transcription factor controls <i>DTX18</i> gene expression in hydroxycinnamic acid amide secretion. Plant Physiology, 2021, 185, 369-384.	2.3	9
24	Breeding Buckwheat for Increased Levels and Improved Quality of Protein. Plants, 2021, 10, 14.	1.6	22
25	JAZ8 Interacts With VirE3 Attenuating Agrobacterium Mediated Root Tumorigenesis. Frontiers in Plant Science, 2021, 12, 685533.	1.7	6
26	The Complete Chloroplast Genome Sequences of Eight Fagopyrum Species: Insights Into Genome Evolution and Phylogenetic Relationships. Frontiers in Plant Science, 2021, 12, 799904.	1.7	17
27	Newly discovered tetraploid Fagopyrum homotropicum in Tibet, China. Phytotaxa, 2021, 528, 202-208.	0.1	O
28	Effects of phosphate fertiliser on the physicochemical properties of Tartary buckwheat (Fagopyrum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf !
29	Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances, 2020, 39, 107479.	6.0	67
30	Breeding buckwheat for nutritional quality. Breeding Science, 2020, 70, 67-73.	0.9	47
31	Fagopyrum esculentum ssp. ancestrale-A Hybrid Species Between Diploid F. cymosum and F. esculentum. Frontiers in Plant Science, 2020, 11, 1073.	1.7	6
32	MYB Transcription Repressors Regulate Plant Secondary Metabolism. Critical Reviews in Plant Sciences, 2019, 38, 159-170.	2.7	65
33	Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences, 2019, 20, 2479.	1.8	417
34	Ft MYB 16 interacts with Ftimportinâ€Ĥ±1 to regulate rutin biosynthesis in tartary buckwheat. Plant Biotechnology Journal, 2019, 17, 1479-1481.	4.1	20
35	Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 2019, 250, 783-801.	1.6	79
36	Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. Journal of Experimental Botany, 2018, 69, 1955-1966.	2.4	74

#	Article	IF	Citations
37	Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Applied Microbiology and Biotechnology, 2018, 102, 9-16.	1.7	31
38	Co-expression of PeDREB2a and KcERF Improves Drought and Salt Tolerance in Transgenic Lotus corniculatus. Journal of Plant Growth Regulation, 2018, 37, 550-559.	2.8	9
39	Description of Cultivated Tartary Buckwheat. , 2018, , 45-52.		2
40	Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC Plant Biology, 2018, 18, 26.	1.6	30
41	Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through <scp>ORA</scp> 59 transcription factor. Plant Journal, 2018, 95, 444-457.	2.8	63
42	Fagopyrum longzhoushanense, a new species of Polygonaceae from Sichuan, China. Phytotaxa, 2017, 291, 73.	0.1	8
43	LNK1 and LNK2 Corepressors Interact with the MYB3 Transcription Factor in Phenylpropanoid Biosynthesis. Plant Physiology, 2017, 174, 1348-1358.	2.3	95
44	FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in <i>Fagopyrum tataricum</i> . New Phytologist, 2017, 216, 814-828.	3.5	66
45	Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences. Scientific Reports, 2017, 7, 6514.	1.6	34
46	Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Frontiers in Plant Science, 2016, 7, 519.	1.7	81
47	Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances, 2016, 34, 441-449.	6.0	346
48	Identification of JAZ1-MYC2 Complex in Lotus corniculatus. Journal of Plant Growth Regulation, 2016, 35, 440-448.	2.8	4
49	Plantlet Regeneration of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) in Vitro Tissue Cultures. Protein and Peptide Letters, 2016, 23, 468-477.	0.4	4
50	The <i>Agrobacterium tumefaciens</i> virulence protein VirE3 is a transcriptional activator of the Fâ€box gene <i><scp>VBF</scp></i> Plant Journal, 2015, 84, 914-924.	2.8	27
51	Ectopic Expression of Fagopyrum tataricum FtMYB12 Improves Cold Tolerance in Arabidopsis thaliana. Journal of Plant Growth Regulation, 2015, 34, 362-371.	2.8	31
52	High-efficiency Agrobacterium-mediated transformation of Lotus corniculatus L. using phosphomannose isomerase positive selection. Plant Cell, Tissue and Organ Culture, 2015, 121, 413-422.	1.2	12
53	<i>Fagopyrum luojishanense</i> , a New Species of Polygonaceae from Sichuan, China. Novon, 2015, 24, 22-26.	0.3	19
54	Production and transcriptional regulation of proanthocyanidin biosynthesis in forage legumes. Applied Microbiology and Biotechnology, 2015, 99, 3797-3806.	1.7	23

#	Article	IF	CITATIONS
55	Changing a conserved amino acid in R2R3â€< scp>MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in <i>Arabidopsis</i> . Plant Journal, 2015, 84, 395-403.	2.8	59
56	<i>Fagopyrum hailuogouense</i> (Polygonaceae), One New Species from Sichuan, China. Novon, 2015, 24, 222-224.	0.3	16
57	Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance. Functional and Integrative Genomics, 2014, 14, 453-466.	1.4	55
58	Phylogenetic relationship of four new species related to southwestern Sichuan Fagopyrum based on morphological and molecular characterization. Biochemical Systematics and Ecology, 2014, 57, 403-409.	0.6	17
59	Cotton proteomics for deciphering the mechanism of environment stress response and fiber development. Journal of Proteomics, 2014, 105, 74-84.	1.2	34
60	Bioactive compounds in functional buckwheat food. Food Research International, 2012, 49, 389-395.	2.9	210
61	Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene, 2012, 506, 10-17.	1.0	63
62	Genetic diversity of four new species related to southwestern Sichuan buckwheats as revealed by karyotype, ISSR and allozyme characterization. Plant Systematics and Evolution, 2012, 298, 751-759.	0.3	29
63	<i>Fagopyrum wenchuanense</i> and <i>Fagopyrum qiangcai</i> , Two New Species of Polygonaceae from Sichuan, China. Novon, 2011, 21, 256-261.	0.3	27
64	Soybean transcription factor GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Applied Microbiology and Biotechnology, 2011, 91, 1095-1105.	1.7	32
65	Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied Microbiology and Biotechnology, 2010, 88, 737-750.	1.7	75
66	Fagopyrum pugense (Polygonaceae), a New Species from Sichuan, China. Novon, 2010, 20, 239-242.	0.3	24