List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8387653/publications.pdf Version: 2024-02-01

LUÃE REANCO

#	Article	IF	CITATIONS
1	Preparation and Characterization of New Room Temperature Ionic Liquids. Chemistry - A European Journal, 2002, 8, 3671.	1.7	512
2	More Sustainable Approaches for the Synthesis of N-Based Heterocycles. Chemical Reviews, 2009, 109, 2703-2802.	23.0	339
3	lonic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 527-546.	3.3	331
4	Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilibria, 2017, 448, 135-142.	1.4	303
5	lonic Liquids as Active Pharmaceutical Ingredients. ChemMedChem, 2011, 6, 975-985.	1.6	294
6	Quest for Greenâ€ S olvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem, 2019, 12, 1549-1559.	3.6	286
7	From Phase Change Materials to Green Solvents: Hydrophobic Low Viscous Fatty Acid–Based Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2018, 6, 3888-3895.	3.2	251
8	Highly Selective Transport of Organic Compounds by Using Supported Liquid Membranes Based on Ionic Liquids. Angewandte Chemie - International Edition, 2002, 41, 2771-2773.	7.2	214
9	Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8478-8488.	1.7	207
10	Studies on the Selective Transport of Organic Compounds by Using Ionic Liquids as Novel Supported Liquid Membranes. Chemistry - A European Journal, 2002, 8, 3865-3871.	1.7	161
11	Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chemistry, 2007, 9, 873.	4.6	142
12	Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chemistry, 2003, 5, 347-352.	4.6	140
13	Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chemistry, 2009, 11, 1660.	4.6	124
14	Electrochromic and magnetic ionic liquids. Chemical Communications, 2011, 47, 2300-2302.	2.2	121
15	A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. Physical Chemistry Chemical Physics, 2018, 20, 206-213.	1.3	121
16	Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chemistry, 2017, 19, 1653-1658.	4.6	116
17	Development of novel ionic liquids based on ampicillin. MedChemComm, 2012, 3, 494.	3.5	105
18	Evaluation of solubility and partition properties of ampicillin-based ionic liquids. International Journal of Pharmaceutics, 2013, 456, 553-559.	2.6	97

#	Article	IF	CITATIONS
19	Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. RSC Advances, 2014, 4, 4301-4307.	1.7	93
20	Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 2018, 234, 414-421.	3.4	93
21	Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids. Journal of Chemical & Engineering Data, 2010, 55, 609-615.	1.0	89
22	Studies on dissolution of carbohydrates in ionic liquids and extraction from aqueous phase. Green Chemistry, 2009, 11, 1406.	4.6	83
23	Carbohydrates-based deep eutectic solvents: Thermophysical properties and rice straw dissolution. Journal of Molecular Liquids, 2017, 247, 441-447.	2.3	83
24	lonic Liquids as a Convenient New Medium for the Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable Osmium/Ligand. Journal of Organic Chemistry, 2004, 69, 4381-4389.	1.7	79
25	Simple transformation of crystalline chiral natural anions to liquid medium and their use to induce chirality. Chemical Communications, 2006, , 2371-2372.	2.2	78
26	Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. Journal of Membrane Science, 2006, 270, 42-49.	4.1	76
27	Catalytic olefin epoxidation with cyclopentadienyl–molybdenum complexes in room temperature ionic liquids. Tetrahedron Letters, 2005, 46, 47-52.	0.7	71
28	Hydrophobic Deep Eutectic Solvents: A Circular Approach to Purify Water Contaminated with Ciprofloxacin. ACS Sustainable Chemistry and Engineering, 2019, 7, 14739-14746.	3.2	69
29	Antitumor Activity of Ionic Liquids Based on Ampicillin. ChemMedChem, 2015, 10, 1480-1483.	1.6	68
30	Concurrent Desulfurization and Denitrogenation of Fuels Using Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 11341-11349.	3.2	68
31	Glass transition relaxation and fragility in two room temperature ionic liquids. Magyar Apróvad Közlemények, 2003, 71, 659-666.	1.4	64
32	Intrinsically photochromic ionic liquids. Chemical Communications, 2009, , 6204.	2.2	62
33	Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A, 2004, 218, 5-11.	4.8	61
34	Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices. ACS Sustainable Chemistry and Engineering, 2018, 6, 2240-2249.	3.2	61
35	lonic liquids as recyclable reaction media for the tetrahydropyranylation of alcohols. Tetrahedron, 2001, 57, 4405-4410.	1.0	59
36	Osmium catalyzed asymmetric dihydroxylation of methyl trans-cinnamate in ionic liquids, followed by supercritical CO2 product recovery. Journal of Organometallic Chemistry, 2005, 690, 3600-3608.	0.8	56

#	Article	IF	CITATIONS
37	Catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable OsO42â^'in ionic liquid [bmim][PF6]. Chemical Communications, 2002, , 3036-3037.	2.2	55
38	Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics, 2020, 12, 221.	2.0	55
39	Novel Bipyridinium Ionic Liquids as Liquid Electrochromic Devices. Chemistry - A European Journal, 2014, 20, 3982-3988.	1.7	53
40	Novel organic salts based on fluoroquinolone drugs: Synthesis, bioavailability and toxicological profiles. International Journal of Pharmaceutics, 2014, 469, 179-189.	2.6	48
41	Efficient catalyst reuse by simple dissolution in non-conventional media. Chemical Communications, 2007, , 2669-2679.	2.2	46
42	Synthesis and properties of new functionalized guanidinium based ionic liquids as non-toxic versatile organic materials. Tetrahedron, 2010, 66, 8785-8794.	1.0	45
43	Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug. ChemMedChem, 2019, 14, 907-911.	1.6	44
44	Hydrophobic deep eutectic solvents for purification of water contaminated with Bisphenol-A. Journal of Molecular Liquids, 2020, 297, 111841.	2.3	42
45	Clean osmium-catalyzed asymmetric dihydroxylation of olefins in ionic liquids and supercritical CO2 product recovery. Chemical Communications, 2005, , 107.	2.2	41
46	Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids. Tetrahedron, 2008, 64, 2216-2224.	1.0	40
47	Europium(III) Tetrakis(β-diketonate) Complex as an Ionic Liquid: A Calorimetric and Spectroscopic Study. Inorganic Chemistry, 2013, 52, 3755-3764.	1.9	39
48	Mesoporous nanosilica-supported polyoxomolybdate as catalysts for sustainable desulfurization. Microporous and Mesoporous Materials, 2019, 275, 163-171.	2.2	39
49	Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid. ChemSusChem, 2016, 9, 1081-1084.	3.6	38
50	Highlighting the Biological Potential of the Brown Seaweed Fucus spiralis for Skin Applications. Antioxidants, 2020, 9, 611.	2.2	38
51	Recent Advances of Metallocenes for Medicinal Chemistry. Mini-Reviews in Medicinal Chemistry, 2017, 17, 771-784.	1.1	37
52	Novel ionic liquids for interfacial and tribological applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 1-8.	2.3	36
53	Supramolecular hydrogel based on a sodium deep eutectic solvent. Chemical Communications, 2018, 54, 7527-7530.	2.2	36
54	A review on alternative lubricants: Ionic liquids as additives and deep eutectic solvents. Journal of Molecular Liquids, 2021, 333, 116004.	2.3	34

#	Article	IF	CITATIONS
55	Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics, 2020, 12, 694.	2.0	33
56	A Comparative Study on Absorption and Selectivity of Organic Vapors by Using Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal, 2007, 13, 8470-8477.	1.7	32
57	Capture of Dioxins by Ionic Liquids. Environmental Science & amp; Technology, 2008, 42, 2570-2574.	4.6	31
58	Melting behaviour of ionic salts in the presence of high pressure CO2. Fluid Phase Equilibria, 2010, 294, 121-130.	1.4	31
59	Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?. Fuel, 2021, 293, 120297.	3.4	31
60	Novel biocompatible ionic liquids based on gluconate anion. Green Chemistry Letters and Reviews, 2015, 8, 8-12.	2.1	29
61	Electrochromic Devices Based on Disubstituted Oxoâ€Bipyridinium Ionic Liquids. ChemPlusChem, 2015, 80, 202-208.	1.3	27
62	Chiral Guanidinium Ionic Liquids for Asymmetric Dihydroxylation of Olefins with Recycling of the Catalytic System by Supercritical CO2. ACS Catalysis, 2011, 1, 1408-1413.	5.5	25
63	Membranes with a low loading of Metal–Organic Frameworkâ€6upported Ionic Liquids for CO ₂ /N ₂ separation in CO ₂ capture. Energy Technology, 2017, 5, 2158-2162.	1.8	25
64	CO 2 + ionic liquid biphasic system for reaction/product separation in the synthesis of cyclic carbonates. Journal of Supercritical Fluids, 2018, 132, 71-75.	1.6	25
65	Ionic liquids as an efficient bulk membrane for the selective transport of organic compounds. Journal of Physical Organic Chemistry, 2008, 21, 718-723.	0.9	24
66	Asymmetric alkene epoxidation by Mn(III)salen catalyst in ionic liquids. Inorganica Chimica Acta, 2010, 363, 3321-3329.	1.2	24
67	Switchable electrochromic devices based on disubstituted bipyridinium derivatives. RSC Advances, 2015, 5, 27867-27873.	1.7	24
68	CO ₂ capture systems based on saccharides and organic superbases. Faraday Discussions, 2015, 183, 429-444.	1.6	23
69	Synthesis and properties of reversible ionic liquids using CO2, mono- to multiple functionalization. Tetrahedron, 2012, 68, 7408-7413.	1.0	21
70	Electroosmotic flow modulation in capillary electrophoresis by organic cations from ionic liquids. Electrophoresis, 2012, 33, 1182-1190.	1.3	21
71	Synthesis and characterization of luminescent room temperature ionic liquids based on Ru(bpy)(CN)42â^'. Dalton Transactions, 2013, 42, 6213.	1.6	21
72	Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces. Beilstein Journal of Nanotechnology, 2017, 8, 1961-1971.	1.5	21

#	Article	IF	CITATIONS
73	Deep eutectic solvents (DES) based on sulfur as alternative lubricants for silicon surfaces. Journal of Molecular Liquids, 2019, 295, 111728.	2.3	21
74	Application of nanofiltration to re-use the sharpless asymmetric dihydroxylation catalytic system. Tetrahedron: Asymmetry, 2007, 18, 1637-1641.	1.8	20
75	Intrinsically electrochromic ionic liquids based on vanadium oxides: illustrating liquid electrochromic cells. RSC Advances, 2013, 3, 25627.	1.7	20
76	Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid. Physical Chemistry Chemical Physics, 2015, 17, 24108-24120.	1.3	20
77	MechanoAPlâ€ILs: Pharmaceutical Ionic Liquids Obtained through Mechanochemical Synthesis. ChemSusChem, 2017, 10, 1360-1363.	3.6	19
78	A Novel Approach for Bisphosphonates: Ionic Liquids and Organic Salts from Zoledronic Acid. ChemMedChem, 2019, 14, 1767-1770.	1.6	19
79	Alendronic Acid as Ionic Liquid: New Perspective on Osteosarcoma. Pharmaceutics, 2020, 12, 293.	2.0	19
80	Novel aqueous biphasic system based on ethyl lactate for sustainable separations: Phase splitting mechanism. Journal of Molecular Liquids, 2018, 262, 37-45.	2.3	18
81	Studies of bipyridinium ionic liquids and deep eutectic solvents as electrolytes for electrochromic devices. Electrochimica Acta, 2018, 283, 718-726.	2.6	18
82	Metal complexes of dipyridine hexaaza macrocycles. Structural differences between 18- and 20-membered macrocycles on complexation. Dalton Transactions RSC, 2002, , 3539.	2.3	17
83	Screening of Potential Stress Biomarkers in Sweat Associated with Sports Training. Sports Medicine - Open, 2021, 7, 8.	1.3	17
84	Assessment of green cleaning effectiveness on polychrome surfaces by <scp>MALDIâ€TOF</scp> mass spectrometry and microscopic imaging. Microscopy Research and Technique, 2014, 77, 574-585.	1.2	16
85	Reversible systems based on CO ₂ , amino-acids and organic superbases. RSC Advances, 2015, 5, 35564-35571.	1.7	16
86	Sharpless Asymmetric Dihydroxylation of Olefins in WaterSurfactant Media with Recycling of the Catalytic System by Membrane Nanofiltration. Advanced Synthesis and Catalysis, 2008, 350, 2086-2098.	2.1	15
87	Biocompatible locust bean gum mesoporous matrices prepared by ionic liquids and a scCO ₂ sustainable system. RSC Advances, 2015, 5, 107700-107706.	1.7	15
88	Organocatalysis with Chiral Ionic Liquids. Mini-Reviews in Organic Chemistry, 2014, 11, 141-153.	0.6	15
89	Nondestructive Characterization and Enzyme Cleaning of Painted Surfaces: Assessment from the Macro to Nano Level. Microscopy and Microanalysis, 2013, 19, 1632-1644.	0.2	14
90	Characterization of a Novel Intrinsic Luminescent Roomâ€Temperature Ionic Liquid Based on [P _{6,6,6,14}][ANS]. Chemistry - A European Journal, 2015, 21, 726-732.	1.7	14

#	Article	IF	CITATIONS
91	Microwave-Assisted Synthesis and Ionic Liquids: Green and Sustainable Alternatives toward Enzymatic Lipophilization of Anthocyanin Monoglucosides. Journal of Agricultural and Food Chemistry, 2020, 68, 7387-7392.	2.4	14
92	The effect of chloride ions and organic matter on the photodegradation of acetamiprid in saline waters. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 117-124.	2.0	13
93	Ionic Liquids and Deep Eutectic Solvents for Application in Pharmaceutics. Pharmaceutics, 2020, 12, 909.	2.0	13
94	Alkaline Iodide-Based Deep Eutectic Solvents for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	13
95	The effect of three luminescent ionic liquids on corroded glass surfaces – A first step into stained-glass cleaning. Corrosion Science, 2017, 118, 109-117.	3.0	12
96	Copper(II) coordination polymers of arylhydrazone of 1H-indene-1,3(2H)-dione linked by 4,4â€2-bipyridineor hexamethylenetetramine: Evaluation of catalytic activity in Henry reaction. Polyhedron, 2017, 133, 33-39.	1.0	12
97	Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media. Catalysts, 2019, 9, 284.	1.6	12
98	Vapor Pressure Assessment of Sulfolane-Based Eutectic Solvents: Experimental, PC-SAFT, and Molecular Dynamics. Journal of Physical Chemistry B, 2020, 124, 10386-10397.	1.2	12
99	Thermal and photochemical properties of 4′-hydroxyflavylium in water–ionic liquid biphasic systems. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168, 185-189.	2.0	11
100	Varnish removal from paintings using ionic liquids. Journal of Materials Chemistry A, 2013, 1, 7016.	5.2	11
101	Task–specific Ionic Liquids Based on Sulfur for Tribological Applications. ChemistrySelect, 2016, 1, 3612-3617.	0.7	11
102	Highly water soluble room temperature superionic liquids of APIs. New Journal of Chemistry, 2017, 41, 6986-6990.	1.4	11
103	Oxidation of Cyclohexene to <i>trans</i> -1,2-Cyclohexanediol Promoted by <i>p</i> -Toluenesulfonic Acid without Organic Solvents. Journal of Chemical Education, 2011, 88, 1002-1003.	1.1	10
104	Bis(bipyridinium) Salts as Multicolored Electrochromic Devices. ChemPlusChem, 2017, 82, 1211-1217.	1.3	10
105	Alkali Iodide Deep Eutectic Solvents as Alternative Electrolytes for Dye Sensitized Solar Cells. Sustainable Chemistry, 2021, 2, 222-236.	2.2	10
106	Bisphosphonates and Cancer: A Relationship Beyond the Antiresorptive Effects. Mini-Reviews in Medicinal Chemistry, 2019, 19, 988-998.	1.1	10
107	LC-MS/MS methodology development and validation for the screening and quantification of five antibiotics in water. Analytical Methods, 2022, 14, 935-948.	1.3	10
108	Tetramethylguanidine-based gels and colloids of cellulose. Carbohydrate Polymers, 2017, 169, 58-64.	5.1	9

#	Article	IF	CITATIONS
109	Beneficial and detrimental effects of choline chloride–oxalic acid deep eutectic solvent on biogas production. Waste Management, 2021, 131, 368-375.	3.7	9
110	Task specific ionic liquids as polarity shifting additives of common organic solvents. New Journal of Chemistry, 2014, 38, 5559-5565.	1.4	8
111	CO2 capture and reversible release using mono-saccharides and an organic superbase. Journal of Supercritical Fluids, 2015, 105, 151-157.	1.6	8
112	Intrinsically Electrochromic Deep Eutectic Solvents. ChemistrySelect, 2019, 4, 1530-1534.	0.7	7
113	Tailoring amphotericin B as an ionic liquid: an upfront strategy to potentiate the biological activity of antifungal drugs. RSC Advances, 2021, 11, 14441-14452.	1.7	7
114	Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics, 2021, 13, 218.	2.0	7
115	Opportunities for Membrane Separation Processes Using Ionic Liquids. ACS Symposium Series, 2005, , 97-110.	0.5	6
116	Mononuclear copper(ii) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium. RSC Advances, 2016, 6, 83412-83420.	1.7	6
117	Photochromic Room Temperature Ionic Liquids Based on Anionic Diarylethene Derivatives. ChemPhotoChem, 2019, 3, 525-528.	1.5	6
118	Improving the Lubrication of Silicon Surfaces Using Ionic Liquids as Oil Additives: The Effect of Sulfur-Based Functional Groups. Tribology Letters, 2020, 68, 1.	1.2	6
119	Sodium Hexanoate and Dodecanoate Salt-Based Eutectic Solvents: Density, Viscosity, and Kamlet–Taft Parameters. Journal of Chemical & Engineering Data, 2021, 66, 2793-2802.	1.0	6
120	Use of Organic Superbases and Temperature Effects for the Development of Reversible Protic Amino Acid Salts. Synlett, 2013, 24, 2525-2530.	1.0	5
121	Bio-inspired Systems for Carbon Dioxide Capture, Sequestration and Utilization. , 0, , .		5
122	Hydrophobic ionic liquids at liquid and solid interfaces. Tribology International, 2019, 129, 459-467.	3.0	5
123	Polyoxometalatesâ€Based Ionic Liquids (POMsâ€ILs) for Electrochemical Applications. ChemistrySelect, 2020, 5, 12266-12271.	0.7	5
124	Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics, 2020, 12, 952.	2.0	5
125	Picoliniumâ€Based Hydrophobic Ionic Liquids as Additives to PEG200 to Lubricate Steelâ€6ilicon Contacts. ChemistrySelect, 2020, 5, 5864-5872.	0.7	5
126	Fluoroquinolone-Based Organic Salts and Ionic Liquids as Highly Bioavailable Broad-Spectrum Antimicrobials. Proceedings (mdpi), 2020, 78, .	0.2	5

#	Article	IF	CITATIONS
127	Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2. Pharmaceutics, 2022, 14, 877.	2.0	5
128	Application of polyoxometalate-ionic liquids (POM-ILs) in dye-sensitized solar cells (DSSCs). Materials Letters: X, 2020, 6, 100033.	0.3	4
129	Catalytic effect of different hydroxyl-functionalised ionic liquids together with Zn(II) complex in the synthesis of cyclic carbonates from CO2. Molecular Catalysis, 2021, 499, 111292.	1.0	4
130	Eutectic systems containing an ionic liquid and PEG200 as lubricants for silicon surfaces: Effect of the mixture's molar ratio. Journal of Molecular Liquids, 2022, 350, 118572.	2.3	4
131	Photo-Organocatalysis, Photo-Redox, and Electro- Organocatalysis Processes. , 0, , .		3
132	Copper(II) Complexes of Arylhydrazone of 1H-Indene-1,3(2H)-dione as Catalysts for the Oxidation of Cyclohexane in Ionic Liquids. Catalysts, 2018, 8, 636.	1.6	3
133	Ionic Systems and Nanomaterials as Antiseptic and Disinfectant Agents for Surface Applications: A Review. Surfaces, 2021, 4, 169-190.	1.0	3
134	Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. International Journal of Pharmaceutics, 2021, 610, 121262.	2.6	3
135	Toxicological Evaluation of Ionic Liquids. ACS Symposium Series, 2010, , 135-144.	0.5	2
136	Studies of the Influence in Acetonitrile Polarity Using Imidazolium Ionic Liquids as Additives. Journal of Chemical & Engineering Data, 2013, 58, 1449-1453.	1.0	2
137	Solubility of Bioactive, Inorganic and Polymeric Solids in Ionic Liquids — Experimental and Prediction Perspectives. , 0, , .		2
138	Carbon Dioxide to Methane using Ruthenium Nanoparticles: Effect of the Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	2
139	Photoâ€electrochromic salt composed by viologen cation and diarylethene anion derivatives. Electrochemical Science Advances, 2023, 3, .	1.2	2
140	Synthesis and characterisation of ionic liquid crystals based on substituted pyridinium cations. Liquid Crystals, 2022, 49, 1809-1821.	0.9	2
141	Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable OsO42- in Ionic Liquid [bmim][PF6] ChemInform, 2003, 34, no.	0.1	1
142	Recent Advances in Sustainable Organocatalysis. , 0, , .		1
143	Ionic Liquids Based on Oxidoperoxido-Molybdenum(VI) Complexes with a Chelating Picolinate Ligand for Catalytic Epoxidation. Reactions, 2020, 1, 147-161.	0.9	1
144	A solventâ€free strategy to prepare amorphous salts of folic acid with enhanced solubility and cell permeability. Chemistry Methods, 0, , .	1.8	1

#	Article	IF	CITATIONS
145	Clean Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins in Ionic Liquids and Supercritical CO2 Product Recovery ChemInform, 2005, 36, no.	0.1	0
146	CanÂionic liquids be the key forÂpharmaceutical polymorphic control?ÂGabapentin as a case study. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s360-s360.	0.0	0
147	Ambipolar pentacyclic diamides with interesting electrochemical and optoelectronic properties. Chemical Communications, 2020, 56, 14893-14896.	2.2	Ο
148	Mesoporous Silica Nanoparticles with Manganese and Lanthanides Salts: Synthesis, Characterization and Cytotoxicity studies. Dalton Transactions, 2021, 50, 8588-8599.	1.6	0
149	More Sustainable Synthetic Organic Chemistry Approaches Based on Catalyst Reuse. , 2007, , 103-120.		Ο
150	Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts, 2022, 12, 47.	1.6	0
151	Imidazolium and picolinium-based electrolytes for electrochemical reduction of CO ₂ at high pressure. Energy Advances, 0, , .	1.4	0
152	Ferrocene-Based Porous Organic Polymer (FPOP): Synthesis, Characterization and an Electrochemical Study. Electrochem, 2022, 3, 184-197.	1.7	0