Hossein Hosseini Toudeshky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8387171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The study on the overloading effect on fatigue crack growth considering residual stress relaxation in Al 5456-H38. Mechanics Based Design of Structures and Machines, 2023, 51, 6843-6862.	3.4	Ο
2	Stress–strain prediction of dual phase steels using 3D RVEs considering both interphase hardness variation and interface debonding at grain boundaries. Archive of Applied Mechanics, 2022, 92, 255-270.	1.2	3
3	Influences of Residual Stress, Surface Roughness and Peak-Load on Micro-Cracking: Sensitivity Analysis. Metals, 2021, 11, 320.	1.0	3
4	Computational microstructural model of ordinary state-based Peridynamic theory for damage mechanisms, void nucleation, and propagation in DP600 steel. Engineering Fracture Mechanics, 2021, 247, 107660.	2.0	11
5	Enhanced variational approach for damage analysis of laminated composite. Mechanics of Advanced Materials and Structures, 2020, 27, 1483-1493.	1.5	1
6	Damage behaviour of laminated composites during fatigue loading. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 698-710.	1.7	6
7	Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials. Engineering Fracture Mechanics, 2020, 235, 107179.	2.0	24
8	Prediction of interlaminar fatigue damages in adhesively bonded joints using mixed-mode strain based cohesive zone modeling. Theoretical and Applied Fracture Mechanics, 2020, 106, 102480.	2.1	17
9	Nanoindentation characterization of Glass/Epoxy composite for viscoelastic damage interlaminar modeling. Engineering Fracture Mechanics, 2020, 226, 106873.	2.0	4
10	Analytical study of transverse cracking in cross-ply laminates under combined loading based on a new coupled micro-meso approach. Mechanics of Materials, 2019, 139, 103149.	1.7	2
11	Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure. International Journal of Mechanical Sciences, 2019, 153-154, 64-74.	3.6	11
12	Low cycle fatigue analyses of open-celled aluminum foam under compression–compression loading using experimental and microstructure finite element analysis. Journal of Alloys and Compounds, 2019, 797, 231-236.	2.8	6
13	Experimental and 3D Micromechanical Analysis of Stress–Strain Behavior and Damage Initiation in Dual-Phase Steels. Journal of Materials Engineering and Performance, 2019, 28, 2903-2918.	1.2	12
14	Effect of fatigue loading on wicking properties of polyamide 66 nanofiber yarns. Journal of Applied Polymer Science, 2019, 136, 47206.	1.3	8
15	Investigation of progressive failure in the composite sandwich panels with elastomeric foam core under concentrated loading. Journal of Sandwich Structures and Materials, 2019, 21, 2585-2615.	2.0	2
16	Static strength and damage evaluation of high speed drilled composite material using acoustic emission and finite element techniques. Engineering Fracture Mechanics, 2019, 210, 470-485.	2.0	10
17	Experimental investigations on the sandwich composite beams and panels with elastomeric foam core. Journal of Sandwich Structures and Materials, 2019, 21, 865-894.	2.0	4
18	Simple and Fast Method to Calculate Shape Factors of Stiffened Panels Repaired with Composites. Journal of Aerospace Engineering, 2019, 32, 04019007.	0.8	1

#	Article	IF	CITATIONS
19	Clustering of interlaminar and intralaminar damages in laminated composites under indentation loading using Acoustic Emission. Composites Part B: Engineering, 2018, 144, 206-219.	5.9	115
20	Prediction of the Stress–Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions. Journal of Materials Engineering and Performance, 2018, 27, 2576-2585.	1.2	2
21	Acoustic Emission-Based Methodology to Evaluate Delamination Crack Growth Under Quasi-static and Fatigue Loading Conditions. Journal of Nondestructive Evaluation, 2018, 37, 1.	1.1	26
22	A corrected model for static and dynamic electromechanical instability of narrow nanotweezers: Incorporation of size effect, surface layer and finite dimensions. International Journal of Modern Physics B, 2018, 32, 1850089.	1.0	8
23	Comparison of elastic properties of openâ€cell metallic biomaterials with different unit cell types. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 386-398.	1.6	33
24	Effects of particle clustering on the plastic deformation and damage initiation of particulate reinforced composite utilizing X-ray CT data and finite element modeling. Composites Part B: Engineering, 2018, 153, 57-69.	5.9	27
25	Development of work-hardening performance in stainless-steel cylindrical columns by application of CFRP jackets. Composite Structures, 2018, 203, 38-49.	3.1	7
26	Barely visible impact damage assessment in laminated composites using acoustic emission. Composites Part B: Engineering, 2018, 152, 180-192.	5.9	86
27	Multiscale modeling of fatigue crack propagation in additively manufactured porous biomaterials. International Journal of Fatigue, 2018, 113, 416-427.	2.8	38
28	Damage evaluation of laminated composite material using a new acoustic emission Lamb-based and finite element techniques. Applied Composite Materials, 2018, 25, 1021-1040.	1.3	23
29	A generalized plane-strain crack density-based model for evaluating the finite fracture toughness of composite laminates. Mechanics of Advanced Materials and Structures, 2017, 24, 131-141.	1.5	11
30	Influence of aging on mechanical properties of equal channel angular pressed aluminum alloy 7075. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231, 1803-1811.	1.5	10
31	Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution. Engineering With Computers, 2017, 33, 125-136.	3.5	8
32	High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure. Mechanics of Materials, 2017, 106, 8-19.	1.7	21
33	Viscoelastic-damage interface model formulation with friction to simulate the delamination growth in mode II shear. Mechanics of Time-Dependent Materials, 2017, 21, 535-548.	2.3	4
34	Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization. Composites Part B: Engineering, 2017, 113, 185-196.	5.9	76
35	Experimental validation of an empirical nonlinear shear failure model for laminated composite materials. Journal of Composite Materials, 2017, 51, 2331-2345.	1.2	7
36	Delamination analysis in composite laminates by means of Acoustic Emission and bi-linear/tri-linear Cohesive Zone Modeling. Composite Structures, 2017, 161, 505-512.	3.1	41

#	Article	IF	CITATIONS
37	Experimental and multi-scale analyses of open-celled aluminum foam with hole under compressive quasi-static loading. Journal of Alloys and Compounds, 2017, 695, 133-141.	2.8	16
38	On the Decreasing Flexural Modulus of Glass/Vinylester Composite Beams Up to Failure State. Latin American Journal of Solids and Structures, 2017, 14, 1464-1489.	0.6	4
39	Fatigue crack growth resistance of 7075 Al alloy after equal channel angular pressing. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1517-1525.	1.7	7
40	Nonlinear beam formulation incorporating surface energy and size effect: application in nano-bridges. Applied Mathematics and Mechanics (English Edition), 2016, 37, 583-600.	1.9	14
41	Shear-Mode Viscoelastic Damage Formulation Interface Element. Key Engineering Materials, 2016, 713, 167-170.	0.4	0
42	Experimental study on the effect of interface fiber orientation and utilized delamination initiation techniques on fracture toughness of glass/epoxy composite laminates. Journal of Reinforced Plastics and Composites, 2016, 35, 1722-1733.	1.6	3
43	The use of response surface methodology in cryrolling of ultrafine grained Al6061 to improve the mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 400-417.	0.7	2
44	Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061. Jom, 2016, 68, 1446-1455.	0.9	9
45	Computational prediction of the fatigue behavior of additively manufactured porous metallic biomaterials. International Journal of Fatigue, 2016, 84, 67-79.	2.8	105
46	Delamination characterization in composite laminates using acoustic emission features, micro visualization and finite element modeling. Journal of Composite Materials, 2016, 50, 3133-3145.	1.2	23
47	Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission. Composites Part B: Engineering, 2016, 85, 113-122.	5.9	69
48	Micro/macro approach for prediction of matrix cracking evolution in laminated composites. Journal of Composite Materials, 2016, 50, 2647-2659.	1.2	23
49	A simplified micromechanics model for predicting the stiffness degradation in symmetric composite laminates. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 1334-1346.	1.7	13
50	ENERGY-BASED ANALYSIS OF TRANSVERSE CRACKING AND INDUCED DELAMINATION IN [S'/90n/S]s LAMINATES: A VARIATIONAL APPROACH. International Journal for Multiscale Computational Engineering, 2015, 13, 475-490.	0.8	0
51	Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Materials & Design, 2015, 68, 167-176.	5.1	55
52	Low ycle fatigue delamination initiation and propagation in fibre metal laminates. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 641-660.	1.7	13
53	Failure mechanism of polyamide 66 nanofiber yarns under fatigue and static tensile loading. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
54	Prediction of delamination growth in laminated composites using acoustic emission and Cohesive Zone Modeling techniques. Composite Structures, 2015, 124, 120-127.	3.1	54

#	Article	IF	CITATIONS
55	Simulation of micromechanical damage to obtain mechanical properties of bimodal Al using XFEM. Mechanics of Materials, 2015, 89, 229-240.	1.7	18
56	Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach. Journal of Reinforced Plastics and Composites, 2015, 34, 868-878.	1.6	37
57	Coupled Effect of Surface Energy and Size Effect on the Static and Dynamic Pull-In Instability of Narrow Nano-Switches. International Journal of Applied Mechanics, 2015, 07, 1550064.	1.3	22
58	Tensile fatigue behavior of polyamide 66 nanofiber yarns. Polymer Engineering and Science, 2015, 55, 1805-1811.	1.5	18
59	Progressive debonding analysis of composite blade root joint of wind turbines under fatigue loading. Composite Structures, 2015, 120, 417-427.	3.1	28
60	Interlaminar Fracture Toughness Evaluation in Glass/Epoxy Composites Using Acoustic Emission and Finite Element Methods. Journal of Materials Engineering and Performance, 2015, 24, 373-384.	1.2	24
61	Intra and damage analysis of laminated composites using coupled continuum damage mechanics with cohesive interface layer. Composite Structures, 2015, 120, 519-530.	3.1	18
62	Inâ€plane progressive matrix cracking analysis of symmetric crossâ€ply laminates with holes. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 290-305.	1.7	9
63	Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 108-121.	2.6	43
64	Experimental and analytical study on fiber-kinking failure mode of laminated composites. Composites Part B: Engineering, 2014, 61, 84-93.	5.9	19
65	Thermo-elastic constants of cracked symmetric laminates: A refined variational approach. International Journal of Mechanical Sciences, 2014, 89, 47-57.	3.6	35
66	Experimental and numerical study of oblique transverse cracking in cross-ply laminates under tension. Composites Part A: Applied Science and Manufacturing, 2014, 67, 140-148.	3.8	27
67	An investigation of matrix cracking damage evolution in composite laminates – Development of an advanced numerical tool. Composite Structures, 2014, 108, 937-950.	3.1	22
68	Simulation of shear failure in dual phase steels using localization criteria and experimental observation. Computational Materials Science, 2014, 94, 106-113.	1.4	29
69	Mixed-mode crack propagation of stiffened curved panels repaired by composite patch under combined tension and shear cyclic loading. Aerospace Science and Technology, 2013, 28, 344-363.	2.5	12
70	Investigation of effective parameters on composite patch debonding under static and cyclic loading using cohesive elements. Finite Elements in Analysis and Design, 2013, 74, 67-75.	1.7	13
71	Homogenization of diffuse delamination in composite laminates. Composite Structures, 2013, 100, 113-120.	3.1	12
72	Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches. Composite Structures, 2013, 100, 154-162.	3.1	17

#	Article	IF	CITATIONS
73	MODELING THE INFLUENCE OF SURFACE EFFECT ON INSTABILITY OF NANO-CANTILEVER IN PRESENCE OF VAN DER WAALS FORCE. International Journal of Structural Stability and Dynamics, 2013, 13, 1250072.	1.5	34
74	Development of a Damage Analysis Method inÂLaminatedÂComposites Using Finite Fracture ToughnessÂof Single Lamina. Mechanics of Advanced Materials and Structures, 2013, 20, 177-188.	1.5	20
75	Fatigue Crack Propagation Analysis of Repaired Pipes With Composite Patch Under Cyclic Pressure. Journal of Pressure Vessel Technology, Transactions of the ASME, 2013, 135, .	0.4	17
76	Fatigue Multi-Cracks Growths in Plates Using J-Integral Approach with a Developed Home FEM Software. Key Engineering Materials, 2013, 560, 61-70.	0.4	0
77	Numerical modeling of diffuse transverse cracks and induced delamination using cohesive elements. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 1392-1405.	1.1	10
78	Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law. Structural Engineering and Mechanics, 2013, 48, 41-56.	1.0	8
79	A Simple Method to Estimate the Fatigue Crack Growth Life of Repaired Pipes with Composite Patches. Applied Mechanics and Materials, 2012, 152-154, 387-392.	0.2	0
80	Effects of Composite Patch Geometry on Collapse Load of Pressurized Steel Pipes with Internal Longitudinal Flaws. Applied Mechanics and Materials, 2012, 152-154, 381-386.	0.2	2
81	Composite Repair of Curved Stiffened Aluminum Panels under Combined Tension and Shear Cyclic Loadings. Applied Mechanics and Materials, 2012, 225, 219-224.	0.2	0
82	Multiple Delaminations Growth in Composite Laminates under Compressive Cyclic Loading in Post-Buckling. Applied Mechanics and Materials, 2012, 225, 195-200.	0.2	1
83	Consideration of concurrent transverse cracking and induced delamination propagation using a generalized microâ€meso approach and experimental validation. Fatigue and Fracture of Engineering Materials and Structures, 2012, 35, 885-901.	1.7	20
84	Finite element fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches. Composite Structures, 2012, 94, 1771-1780.	3.1	19
85	Compression failure and fiber-kinking modeling of laminated composites. Steel and Composite Structures, 2012, 12, 53-72.	1.3	8
86	Implementation of a micro-meso approach for progressive damage analysis of composite laminates. Structural Engineering and Mechanics, 2012, 43, 657-678.	1.0	5
87	An Improved Model for Fiber Kinking Analysis of Unidirectional Laminated Composites. Applied Composite Materials, 2011, 18, 175-196.	1.3	8
88	Fatigue Debonding Analysis of Repaired Aluminium Panels by Composite Patch using Interface Elements. Applied Composite Materials, 2011, 18, 571-584.	1.3	14
89	A generalized micromechanical approach for the analysis of transverse crack and induced delamination in composite laminates. Composite Structures, 2011, 93, 443-455.	3.1	31
90	Analysis of damage events in quasi-isotropic laminates using a generalized micromechanics approach. Procedia Engineering, 2011, 10, 236-241.	1.2	1

Hossein Hosseini Toudeshky

#	Article	IF	CITATIONS
91	Fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches. Procedia Engineering, 2011, 10, 3285-3290.	1.2	5
92	Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations. Applied Composite Materials, 2010, 17, 95-109.	1.3	24
93	Progressive delamination growth analysis using discontinuous layered element. Composite Structures, 2010, 92, 883-890.	3.1	11
94	Delamination buckling growth in laminated composites using layerwise-interface element. Composite Structures, 2010, 92, 1846-1856.	3.1	44
95	Damage analysis of laminated composites using a new coupled microâ€meso approach. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 420-435.	1.7	25
96	Coupling of Continuum Damage Mechanics with De-Cohesive Element for Delamination Analysis in Laminated Composites. Advanced Materials Research, 2010, 123-125, 527-530.	0.3	0
97	Progressive Damage Analysis of Laminated Composites Using Element Free Galerkin Method. Advanced Materials Research, 2010, 123-125, 579-582.	0.3	0
98	Sound transmission between partitioned contiguous enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 1091-1101.	1.1	2
99	Delamination analysis of holed composite laminates using interface elements. Procedia Engineering, 2009, 1, 39-42.	1.2	4
100	Transverse crack density evolution in a single orthotropic lamina under multi-axial stresses using analytical method. Procedia Engineering, 2009, 1, 109-112.	1.2	4
101	Sound transmission into a thick hollow cylinder with the fixed-end boundary condition. Applied Mathematical Modelling, 2009, 33, 1656-1673.	2.2	13
102	Development of the extended parametric meshless Galerkin method to predict the crack propagation path in twoâ€dimensional damaged structures. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 552-566.	1.7	3
103	Finite element crack propagation of adhesively bonded repaired panels in general mixed-mode conditions. Finite Elements in Analysis and Design, 2009, 45, 94-103.	1.7	19
104	Thermal residual stresses effects on fatigue crack growth of repaired panels bounded with various composite materials. Composite Structures, 2009, 89, 216-223.	3.1	37
105	Mixed-mode numerical and experimental fatigue crack growth analyses of thick aluminium panels repaired with composite patches. Composite Structures, 2009, 91, 1-8.	3.1	19
106	Free-edge effects analysis of angle-ply laminates under transverse loading using layer-wise finite-element method with semi-analytical shear stress calculation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 293-306.	1.1	0
107	Mixed-mode 3-D crack propagation of repaired thin aluminum panels using single-side composite patches. International Journal of Fracture, 2008, 153, 105-116.	1.1	9
108	Crack trajectory analysis of single-side repaired thin panels in mixed-mode conditions using glass/epoxy patches. Computers and Structures, 2008, 86, 997-1005.	2.4	15

#	Article	IF	CITATIONS
109	Fracture analysis using parametric meshless Galerkin method. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 49-66.	1.7	4
110	Progressive damage analyses of angleâ€ply laminates exhibiting free edge effects using continuum damage mechanics with layerâ€wise finite element method. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 549-568.	1.7	13
111	Real 3D Crack-Front and Crack Trajectory Analyses of Single-Side Repaired Thick Aluminium Panels. Advanced Materials Research, 2008, 47-50, 777-780.	0.3	2
112	Moving least-squares finite element method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221, 1019-1036.	1.1	0
113	Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1141-1148.	3.8	32
114	Extended parametric meshless Galerkin method. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 2229-2241.	3.4	4
115	A simple method to calculate the crack growth life of adhesively repaired aluminum panels. Composite Structures, 2007, 79, 234-241.	3.1	23
116	Mixed-mode fatigue crack growth of thin aluminium panels with single-side repair using experimental and numerical methods. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 629-639.	1.7	32
117	Mixed-mode fracture analysis of aluminium repaired panels using composite patches. Composites Science and Technology, 2006, 66, 188-198.	3.8	43
118	Analysis of composite skin/stiffener debounding and failure under uniaxial loading. Composite Structures, 2006, 75, 428-436.	3.1	19
119	Experimental investigations on fatigue crack growth of repaired thick aluminium panels in mixed-mode conditions. Composite Structures, 2006, 75, 437-443.	3.1	10
120	Effects of composite patches on fatigue crack propagation of single-side repaired aluminum panels. Composite Structures, 2006, 76, 243-251.	3.1	28
121	Finite cylinder vibrations with different end boundary conditions. Journal of Sound and Vibration, 2006, 297, 293-314.	2.1	40
122	The development of an approximate method for the design of bead-stiffened composite panels. Thin-Walled Structures, 2005, 43, 1663-1676.	2.7	1
123	Experimental fatigue crack growth and crack-front shape analysis of asymmetric repaired aluminium panels with glass/epoxy composite patches. Composite Structures, 2005, 71, 401-406.	3.1	52
124	Parametric meshless Galerkin method. International Journal for Numerical Methods in Engineering, 2005, 64, 1111-1131.	1.5	5
125	The buckling characteristics of some integrally formed bead stiffened composite panels. Thin-Walled Structures, 2005, 43, 629-645.	2.7	5
126	A Three Dimensional Approach of Fatigue Crack Propagation for Aluminum Panels Repaired with Single-Sided Composite Laminates. , 2004, , 313-318.		5

#	Article	IF	CITATIONS
127	LOAD INTERACTION EFFECTS ON FATIGUE CRACK GROWTH. , 2002, , .		Ο
128	Creep life assessments of defect-free components under uniform load and temperature. International Journal of Pressure Vessels and Piping, 1995, 62, 195-200.	1.2	4
129	Delamination of Laminates Governed by Free Edge Interlaminar Stresses Using Interface Element. Key Engineering Materials, 0, 385-387, 821-824.	0.4	3
130	Acoustic Fatigue Crack Growth Prediction in Coupled Air Structures. Key Engineering Materials, 0, 452-453, 293-296.	0.4	0
131	Progressive Damage Analyses of Composite Laminates Exhibiting Free Edge Effects Using a New Micro-Meso Approach. Key Engineering Materials, 0, 471-472, 263-267.	0.4	0
132	Numerical Aspects of Delamination Modeling Using Interface Elements. Key Engineering Materials, 0, 471-472, 606-609.	0.4	1
133	Fatigue Delamination Analysis of Composite Laminates with a Central Hole Using Interface Elements. Key Engineering Materials, 0, 471-472, 568-571.	0.4	0
134	An experimental and theoretical investigation into the effect of braiding angle and combination on a tensile modulus of the tubular biaxial hybrid braids. Journal of Industrial Textiles, 0, , 152808372210881.	1.1	1

9