
Jeong K Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8387118/publications.pdf Version: 2024-02-01

IFONC K L FF

#	Article	IF	CITATIONS
1	Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microbial Cell Factories, 2022, 21, .	4.0	4
2	Production of long-chain free fatty acids from metabolically engineered Rhodobacter sphaeroides heterologously producing periplasmic phospholipase A2 in dodecane-overlaid two-phase culture. Microbial Cell Factories, 2019, 18, 20.	4.0	3
3	Biochemical characterization of protoporphyrinogen dehydrogenase and protoporphyrin ferrochelatase of Vibrio vulnificus and the critical complex formation between these enzymes. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2674-2687.	2.4	6
4	The ferredoxin Rr-HydB is required for the H2-evolving activity of Rr-HydA, a [FeFe]-hydrogenase of Rhodospirillum rubrum. International Journal of Hydrogen Energy, 2015, 40, 4320-4328.	7.1	2
5	Role of <scp>HemF</scp> and <scp>HemN</scp> in the heme biosynthesis of <scp><i>V</i></scp> <i>ibrio vulnificus</i> under <scp>S</scp> â€adenosylmethionineâ€limiting conditions. Molecular Microbiology, 2015, 96, 497-512.	2.5	8
6	Effect of Changes in the Composition of Cellular Fatty Acids on Membrane Fluidity of Rhodobacter sphaeroides. Journal of Microbiology and Biotechnology, 2015, 25, 162-173.	2.1	9
7	Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products. Biotechnology for Biofuels, 2014, 7, 79.	6.2	20
8	Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX. Journal of Microbiology and Biotechnology, 2014, 24, 36-43.	2.1	5
9	The photoheterotrophic H2 evolution of Rhodobacter sphaeroides is enhanced in the presence of ethanol. International Journal of Hydrogen Energy, 2012, 37, 15886-15892.	7.1	8
10	Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresource Technology, 2012, 116, 179-183.	9.6	57
11	Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. International Journal of Hydrogen Energy, 2011, 36, 13964-13971.	7.1	49
12	Competitive Inhibitions of the Chlorophyll Synthase of <i>Synechocystis</i> sp. Strain PCC 6803 by Bacteriochlorophyllide <i>a</i> and the Bacteriochlorophyll Synthase of <i>Rhodobacter sphaeroides</i> by Chlorophyllide <i>a</i> . Journal of Bacteriology, 2010, 192, 198-207.	2.2	14
13	Complete Genome Sequence of <i>Rhodobacter sphaeroides</i> KD131. Journal of Bacteriology, 2009, 191, 1118-1119.	2.2	30
14	Growth arrest of <i>Synechocystis</i> sp. PCC6803 by superoxide generated from heterologously expressed <i>Rhodobacter sphaeroides</i> chlorophyllide <i>a</i> reductase. FEBS Letters, 2009, 583, 219-223.	2.8	11
15	Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. International Journal of Hydrogen Energy, 2008, 33, 1516-1521.	7.1	63
16	Hydrogen evolution under photoheterotrophic and dark fermentative conditions by recombinant Rhodobacter sphaeroides containing the genes for fermentative pyruvate metabolism of Rhodospirillum rubrum. International Journal of Hydrogen Energy, 2008, 33, 5131-5136.	7.1	34
17	Superoxide Generation by Chlorophyllide a Reductase of Rhodobacter sphaeroides. Journal of Biological Chemistry, 2008, 283, 3718-3730.	3.4	18
18	Comparison of H2H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. International Journal of Hydrogen Energy, 2006, 31, 121-127.	7.1	138

JEONG K LEE

#	Article	IF	CITATIONS
19	Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. International Journal of Hydrogen Energy, 2006, 31, 531-538.	7.1	43
20	Lysine Decarboxylase Expression by Vibrio vulnificus Is Induced by SoxR in Response to Superoxide Stress. Journal of Bacteriology, 2006, 188, 8586-8592.	2.2	48
21	Induction of Manganese-Containing Superoxide Dismutase Is Required for Acid Tolerance in Vibrio vulnificus. Journal of Bacteriology, 2005, 187, 5984-5995.	2.2	40
22	Characterization of Cu- and Zn-containing superoxide dismutase ofRhodobacter sphaeroides. FEMS Microbiology Letters, 2004, 234, 261-267.	1.8	15
23	The Protein Complex Composed of Nickel-binding SrnQ and DNA Binding Motif-bearing SrnR of Streptomyces griseusRepresses sodF Transcription in the Presence of Nickel. Journal of Biological Chemistry, 2003, 278, 18455-18463.	3.4	34
24	Identification of cis site involved in nickel-responsive transcriptional repression of sodF gene coding for Fe- and Zn-containing superoxide dismutase of Streptomyces griseus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1493, 200-207.	2.4	18