Manuel A Rodrigo

List of Publications by Citations

Source: https://exaly.com/author-pdf/8387056/manuel-a-rodrigo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

529	21,398	72	120
papers	citations	h-index	g-index
543	23,975 ext. citations	7.7	7.39
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
529	Electrochemical advanced oxidation processes: today and tomorrow. A review. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 8336-67	5.1	1191
528	Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. <i>Chemical Reviews</i> , 2015 , 115, 13362-407	68.1	946
527	Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. <i>Journal of the Electrochemical Society</i> , 2003 , 150, D79	3.9	726
526	Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. <i>Chemical Engineering Journal</i> , 2013 , 228, 944-9	9 64 .7	367
525	Electrochemically assisted remediation of pesticides in soils and water: a review. <i>Chemical Reviews</i> , 2014 , 114, 8720-45	68.1	364
524	Oxidation of 4-Chlorophenol at Boron-Doped Diamond Electrode for Wastewater Treatment. Journal of the Electrochemical Society, 2001 , 148, D60	3.9	344
523	Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. <i>Water Research</i> , 2005 , 39, 2687-703	12.5	323
522	New perspectives for Advanced Oxidation Processes. <i>Journal of Environmental Management</i> , 2017 , 195, 93-99	7.9	295
521	Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. <i>Journal of Environmental Management</i> , 2009 , 90, 410-20	7.9	276
520	Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. <i>Chemical Engineering Journal</i> , 2015 , 262, 286-2	9 4 .7	243
519	Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC. <i>Journal of Membrane Science</i> , 2007 , 306, 47-55	9.6	193
518	Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources, 2007 , 169, 198-204	8.9	188
517	Electrochemical Treatment of 4-Nitrophenol-Containing Aqueous Wastes Using Boron-Doped Diamond Anodes. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 1944-1951	3.9	186
516	Coagulation and electrocoagulation of wastes polluted with dyes. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	181
515	Operation of a horizontal subsurface flow constructed wetlandmicrobial fuel cell treating wastewater under different organic loading rates. <i>Water Research</i> , 2013 , 47, 6731-8	12.5	178
514	Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. <i>Journal of Membrane Science</i> , 2006 , 280, 351-362	9.6	176
513	Electrodissolution of Aluminum Electrodes in Electrocoagulation Processes. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4178-4185	3.9	172

(2004-2009)

512	Synthesis of novel oxidants by electrochemical technology. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 2143-2149	2.6	167
511	Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. <i>Environmental Science & Documental </i>	10.3	163
510	Coagulation and electrocoagulation of oil-in-water emulsions. <i>Journal of Hazardous Materials</i> , 2008 , 151, 44-51	12.8	160
509	Study of the Electrocoagulation Process Using Aluminum and Iron Electrodes. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6189-6195	3.9	148
508	Advanced oxidation processes for the treatment of olive-oil mills wastewater. <i>Chemosphere</i> , 2007 , 67, 832-8	8.4	144
507	Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. <i>Journal of Power Sources</i> , 2013 , 242, 638-645	8.9	142
506	Electrochemical production of perchlorates using conductive diamond electrolyses. <i>Chemical Engineering Journal</i> , 2011 , 166, 710-714	14.7	138
505	PBI-based polymer electrolyte membranes fuel cells. <i>Electrochimica Acta</i> , 2007 , 52, 3910-3920	6.7	133
504	Study of the influence of the amount of PBIB3PO4 in the catalytic layer of a high temperature PEMFC. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 1347-1355	6.7	131
503	Use of conductive-diamond electrochemical oxidation for wastewater treatment. <i>Catalysis Today</i> , 2010 , 151, 173-177	5.3	125
502	Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. <i>Electrochimica Acta</i> , 2006 , 52, 325-331	6.7	121
501	Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism. <i>Journal of Applied Electrochemistry</i> , 2003 , 33, 917-927	2.6	119
500	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118857	21.8	111
499	The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. <i>Journal of Hazardous Materials</i> , 2009 , 163, 158-64	12.8	111
498	Electrochemical Oxidation of Azoic Dyes with Conductive-Diamond Anodes. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3468-3473	3.9	110
497	Short-term effects of temperature and COD in a microbial fuel cell. <i>Applied Energy</i> , 2013 , 101, 213-217	10.7	109
496	Removal of nitrates from groundwater by electrocoagulation. <i>Chemical Engineering Journal</i> , 2011 , 171, 1012-1017	14.7	108
495	Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes. <i>Electrochimica Acta</i> , 2004 , 49, 4641-4650	6.7	108

494	Electrochemical denitrificacion with chlorides using DSA and BDD anodes. <i>Chemical Engineering Journal</i> , 2012 , 184, 66-71	14.7	104
493	Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. <i>Journal of Applied Electrochemistry</i> , 2008 , 38, 793-802	2.6	100
492	Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 5510-5520	6.7	98
491	Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions. <i>Journal of Applied Electrochemistry</i> , 2004 , 34, 87-94	2.6	98
490	Electrochemical Synthesis of Peroxodiphosphate Using Boron-Doped Diamond Anodes. <i>Journal of the Electrochemical Society</i> , 2005 , 152, D191	3.9	97
489	Electrochemical Oxidation of Aqueous Carboxylic Acid Wastes Using Diamond Thin-Film Electrodes. <i>Industrial & Diamong Engineering Chemistry Research</i> , 2003 , 42, 956-962	3.9	97
488	Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison. <i>Water Research</i> , 2009 , 43, 2131-8	12.5	92
487	Measurement of Mass-Transfer Coefficients by an Electrochemical Technique. <i>Journal of Chemical Education</i> , 2006 , 83, 1204	2.4	92
486	Electrochemical incineration of dyes using a boron-doped diamond anode. <i>Journal of Chemical Technology and Biotechnology</i> , 2007 , 82, 575-581	3.5	89
485	Electrochemical Oxidation of Aqueous Phenol Wastes Using Active and Nonactive Electrodes. Journal of the Electrochemical Society, 2002, 149, D118	3.9	89
484	Electrochemical phosphates removal using iron and aluminium electrodes. <i>Chemical Engineering Journal</i> , 2011 , 172, 137-143	14.7	88
483	Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. <i>Electrochimica Acta</i> , 2018 , 263, 1-7	6.7	86
482	A novel titanium PBI-based composite membrane for high temperature PEMFCs. <i>Journal of Membrane Science</i> , 2011 , 369, 105-111	9.6	85
481	The use of a combined process of surfactant-aided soil washing and coagulation for PAH-contaminated soils treatment. <i>Separation and Purification Technology</i> , 2012 , 88, 46-51	8.3	84
480	Highlights during the development of electrochemical engineering. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 1998-2020	5.5	83
479	Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae. <i>Applied Energy</i> , 2013 , 110, 220-226	10.7	81
478	Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. <i>Chemical Engineering Journal</i> , 2016 , 299, 30-36	14.7	80
477	Electrochemical Oxidation of Aqueous Phenol Wastes on Synthetic Diamond Thin-Film Electrodes. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4187-4194	3.9	79

(2011-2016)

4	1 76	Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater. <i>Journal of Hazardous Materials</i> , 2016 , 319, 93-1	1 01 8	78
4	175	Electrochemical technologies for the regeneration of urban wastewaters. <i>Electrochimica Acta</i> , 2010 , 55, 8160-8164	6.7	78
4	174	Break-up of oil-in-water emulsions by electrochemical techniques. <i>Journal of Hazardous Materials</i> , 2007 , 145, 233-40	12.8	78
4	173	Treatment of Fenton-refractory olive oil mill wastes by electrochemical oxidation with boron-doped diamond anodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 1331-1337	3.5	78
4	ļ72	Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells. <i>Journal of Power Sources</i> , 2006 , 157, 284-292	8.9	78
4	ļ71	Electrochemical Oxidation of Polyhydroxybenzenes on Boron-Doped Diamond Anodes. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6629-6637	3.9	78
4	1 70	Electrochemical jet-cell for the in-situ generation of hydrogen peroxide. <i>Electrochemistry Communications</i> , 2016 , 71, 65-68	5.1	78
4	µ69	Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio. <i>Electrochemistry Communications</i> , 2015 , 55, 34-38	5.1	77
4	<u> 1</u> 68	Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. <i>Water Research</i> , 2013 , 47, 1741-50	12.5	77
4	µ67	Effect of the Operating Conditions on the Oxidation Mechanisms in Conductive-Diamond Electrolyses. <i>Journal of the Electrochemical Society</i> , 2007 , 154, E37	3.9	77
4	<u> 1</u> 66	Electrochemical treatment of the effluent of a fine chemical manufacturing plant. <i>Journal of Hazardous Materials</i> , 2006 , 138, 173-81	12.8	77
4	µ65	Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp 3 /sp 2 ratio. <i>Electrochemistry Communications</i> , 2014 , 47, 37-40	5.1	76
4	₁ 64	Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. <i>RSC Advances</i> , 2012 , 2, 1547-1556	3.7	76
4	<u> 1</u> 63	Electrochemical oxidation of alcohols and carboxylic acids with diamond anodes: A comparison with other advanced oxidation processes. <i>Electrochimica Acta</i> , 2008 , 53, 2144-2153	6.7	76
4	ļ62	Electrocatalytic properties of diamond in the oxidation of a persistant pollutant. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 645-650	21.8	74
4	µ61	Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chemical Engineering Journal, 2013, 223, 516-523	14.7	73
4	, 60	Effect of the Current Intensity in the Electrochemical Oxidation of Aqueous Phenol Wastes at an Activated Carbon and Steel Anode. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 3779-3785	5 ^{3.9}	73
4	159	Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. <i>Journal of Power</i>	8.9	72

458	Adsorption equilibrium of phenol onto chemically modified activated carbon F400. <i>Journal of Hazardous Materials</i> , 2006 , 131, 243-8	12.8	72
457	Modeling of Wastewater Electro-oxidation Processes Part I. General Description and Application to Inactive Electrodes. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 1915-1922	3.9	72
456	Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell. <i>Energy & Energy Energy Energy Energy (PBI)</i> 22, 3335-3345	4.1	71
455	Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes. <i>Chemical Engineering Journal</i> , 2012 , 184, 221-227	14.7	70
454	Comparison of the Aluminum Speciation in Chemical and Electrochemical Dosing Processes. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8749-8756	3.9	70
453	Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. <i>Bioresource Technology</i> , 2013 , 148, 39-	46 ¹	66
452	Combined soil washing and CDEO for the removal of atrazine from soils. <i>Journal of Hazardous Materials</i> , 2015 , 300, 129-134	12.8	65
451	Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. <i>Applied Catalysis B: Environmental</i> , 2016 , 188, 305-312	21.8	65
450	Preparation of biodiesel from Jatropha curcas L. oil produced by two-phase solvent extraction. <i>Bioresource Technology</i> , 2010 , 101, 7036-42	11	65
449	Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/EPbO2 anode. <i>Chemosphere</i> , 2014 , 109, 187-94	8.4	64
448	Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. <i>Applied Catalysis B: Environmental</i> , 2015 , 162, 252-259	21.8	63
447	Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. <i>Journal of Hazardous Materials</i> , 2014 , 265, 142-50	12.8	63
446	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. <i>Applied Catalysis B: Environmental</i> , 2015 , 166-167, 454-459	21.8	62
445	Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. <i>Journal of Power Sources</i> , 2015 , 274, 177-185	8.9	62
444	Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. <i>Journal of Hazardous Materials</i> , 2015 , 283, 131-9	12.8	62
443	Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters. <i>Chemical Engineering Journal</i> , 2012 , 211-212, 463-469	14.7	62
442	Electrochemical dosing of iron and aluminum in continuous processes: A key step to explain electro-coagulation processes. <i>Separation and Purification Technology</i> , 2012 , 98, 102-108	8.3	62
441	Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. <i>Bioresource Technology</i> , 2009 , 100, 4704-10	11	61

(2014-2010)

440	Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support. <i>Fuel Cells</i> , 2010 , 10, 312-319	2.9	61	
439	Continuous Electrocoagulation of Synthetic Colloid-Polluted Wastes. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 8171-8177	3.9	60	
438	Removal of arsenic by iron and aluminium electrochemically assisted coagulation. <i>Separation and Purification Technology</i> , 2011 , 79, 15-19	8.3	58	
437	Electrochemical oxidation of Acid Yellow 1 using diamond anode. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 2285-2289	2.6	57	
436	Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation. <i>Journal of Hazardous Materials</i> , 2017 , 339, 232-238	12.8	56	
435	Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media. <i>Journal of Hazardous Materials</i> , 2012 , 213-214, 478-84	12.8	56	
434	The role of particle size on the conductive diamond electrochemical oxidation of soil-washing effluent polluted with atrazine. <i>Electrochemistry Communications</i> , 2015 , 55, 26-29	5.1	55	
433	Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 4209-4217	8.9	55	
432	Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes. <i>Journal of Hazardous Materials</i> , 2008 , 158, 430-7	12.8	55	
431	Environmental applications of electrochemical technology. What is needed to enable full-scale applications?. <i>Current Opinion in Electrochemistry</i> , 2019 , 16, 149-156	7.2	53	
430	Synergy of electrochemical oxidation using boron-doped diamond (BDD) electrodes and ozone (O3) in industrial wastewater treatment. <i>Electrochemistry Communications</i> , 2013 , 27, 34-37	5.1	52	
429	Removal of nitrates by electrolysis in non-chloride media: Effect of the anode material. <i>Separation and Purification Technology</i> , 2011 , 80, 592-599	8.3	51	
428	Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes. <i>Water Research</i> , 2018 , 128, 383-392	12.5	50	
427	Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. <i>Water Research</i> , 2014 , 53, 329-38	12.5	50	
426	Degradation of caffeine by conductive diamond electrochemical oxidation. <i>Chemosphere</i> , 2013 , 93, 1720	0854	50	
425	Electrochemical treatment of diluted cyanide aqueous wastes. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 565-573	3.5	50	
424	Removal of sulfamethoxazole from waters and wastewaters by conductive-diamond electrochemical oxidation. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 1441-1449	3.5	49	
423	Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 121-128	21.8	49	

422	Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation. <i>Desalination</i> , 2010 , 255, 15-20	10.3	49
421	Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. <i>Chemical Engineering Journal</i> , 2016 , 285, 128-136	14.7	48
420	Improving the Efficiency of Carbon Cloth for the Electrogeneration of H2O2: Role of Polytetrafluoroethylene and Carbon Black Loading. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12588-12595	3.9	48
419	Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone. <i>Electrochimica Acta</i> , 2014 , 140, 20-26	6.7	48
418	Use of a combined electrocoagulation bzone process as a pre-treatment for industrial wastewater. <i>Desalination</i> , 2010 , 250, 144-149	10.3	48
417	Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches. <i>Chemical Engineering Journal</i> , 2017 , 310, 581-588	14.7	47
416	Scale-up on electrokinetic remediation: Engineering and technological parameters. <i>Journal of Hazardous Materials</i> , 2016 , 315, 135-43	12.8	47
415	Effect of the electron-acceptors on the performance of a MFC. Bioresource Technology, 2010, 101, 7025	-9 1	46
414	Electrochemical treatment of the pollutants generated in an ink-manufacturing process. <i>Journal of Hazardous Materials</i> , 2007 , 146, 552-7	12.8	46
413	Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. <i>Journal of Applied Electrochemistry</i> , 2007 , 38, 93-100	2.6	46
412	The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes. <i>Electrochimica Acta</i> , 2016 , 187, 119-124	6.7	45
411	Effect of pressure on the electrochemical generation of hydrogen peroxide in undivided cells on carbon felt electrodes. <i>Electrochimica Acta</i> , 2017 , 248, 169-177	6.7	45
410	Use of low current densities in electrolyses with conductive-diamond electrochemical ©xidation to disinfect treated wastewaters for reuse. <i>Electrochemistry Communications</i> , 2011 , 13, 1268-1270	5.1	44
409	Influence of the characteristics of p-Si BDD anodes on the efficiency of peroxodiphosphate electrosynthesis process. <i>Electrochemistry Communications</i> , 2008 , 10, 602-606	5.1	44
408	Modeling of Wastewater Electro-oxidation Processes Part II. Application to Active Electrodes. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 1923-1931	3.9	44
407	Removal of sulfate from mining waters by electrocoagulation. <i>Separation and Purification Technology</i> , 2017 , 182, 87-93	8.3	43
406	Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies. <i>Science of the Total Environment</i> , 2015 , 533, 307-16	10.2	43
405	Solar-powered electrokinetic remediation for the treatment of soil polluted with the herbicide 2,4-D. <i>Electrochimica Acta</i> , 2016 , 190, 371-377	6.7	43

(2017-2013)

404	Production of oxidants via electrolysis of carbonate solutions with conductive-diamond anodes. <i>Chemical Engineering Journal</i> , 2013 , 230, 272-278	14.7	43
403	Electrochemical synthesis of ferrate using boron doped diamond anodes. <i>Electrochemistry Communications</i> , 2007 , 9, 2286-2290	5.1	43
402	A multi-layered view of chemical and biochemical engineering. <i>Chemical Engineering Research and Design</i> , 2020 , 155, A133-A145	5.5	43
401	Treatment of real effluents from the pharmaceutical industry: A comparison between Fenton oxidation and conductive-diamond electro-oxidation. <i>Journal of Environmental Management</i> , 2017 , 195, 216-223	7.9	42
400	Electrochemical Degradation of a Real Pharmaceutical Effluent. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 2685-2694	2.6	42
399	Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. <i>Electrochimica Acta</i> , 2017 , 225, 93-104	6.7	41
398	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?. <i>Chemosphere</i> , 2017 , 166, 549-555	8.4	41
397	Promising TiOSOI composite polybenzimidazole-based membranes for high temperature PEMFCs. <i>ChemSusChem</i> , 2011 , 4, 1489-97	8.3	41
396	A comparison between conductive-diamond electrochemical oxidation and other advanced oxidation processes for the treatment of synthetic melanoidins. <i>Journal of Hazardous Materials</i> , 2009 , 164, 120-5	12.8	41
395	The electrolytic treatment of synthetic urine using DSA electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 744, 62-68	4.1	40
394	Removal of triclosan by conductive-diamond electrolysis and sonoelectrolysis. <i>Journal of Chemical Technology and Biotechnology</i> , 2013 , 88, 823-828	3.5	40
393	The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature. <i>Journal of Power Sources</i> , 2009 , 192, 190-194	8.9	40
392	Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. <i>Journal of Applied Electrochemistry</i> , 2015 , 45, 799-808	2.6	39
391	Effect of electric field on the performance of soil electro-bioremediation with a periodic polarity reversal strategy. <i>Chemosphere</i> , 2016 , 146, 300-7	8.4	39
390	Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils. <i>Journal of Hazardous Materials</i> , 2017 , 322, 413-420	12.8	39
389	Ten steps modeling of electrolysis processes by using neural networks. <i>Environmental Modelling and Software</i> , 2010 , 25, 74-81	5.2	39
388	Isobaric VaporLiquid Equilibria of the Water + 2-Propanol System at 30, 60, and 100 kPa. <i>Journal of Chemical & Data</i> , 1996 , 41, 608-611	2.8	39
387	Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil. <i>Chemosphere</i> , 2017 , 177, 120-127	8.4	38

386	Treatment of actual effluents produced in the manufacturing of atrazine by a photo-electrolytic process. <i>Chemosphere</i> , 2017 , 172, 185-192	8.4	38
385	Electrochemically assisted fences for the electroremediation of soils polluted with 2,4-D: A case study in a pilot plant. <i>Separation and Purification Technology</i> , 2015 , 156, 234-241	8.3	38
384	Use of conductive diamond photo-electrochemical oxidation for the removal of pesticide glyphosate. <i>Separation and Purification Technology</i> , 2016 , 167, 127-135	8.3	38
383	An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. <i>New Biotechnology</i> , 2012 , 29, 415-20	6.4	38
382	Electrosynthesis of ferrates with diamond anodes. AICHE Journal, 2008, 54, 1600-1607	3.6	38
381	Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 6176-84	5.1	37
380	Application of electrokinetic soil flushing to four herbicides: A comparison. <i>Chemosphere</i> , 2016 , 153, 205-11	8.4	37
379	Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing. <i>Separation and Purification Technology</i> , 2014 , 132, 33-40	8.3	37
378	Electrooxidation of Brown-Colored Molasses Wastewater. Effect of the Electrolyte Salt on the Process Efficiency. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 1298-1301	3.9	37
377	Optimisation of the Microporous Layer for a Polybenzimidazole-Based High Temperature PEMFC Effect of Carbon Content. <i>Fuel Cells</i> , 2010 , 10, 770-777	2.9	37
376	Electrochemical Oxidation of Wastewaters Polluted with Aromatics and Heterocyclic Compounds. Journal of the Electrochemical Society, 2007 , 154, E165	3.9	37
375	Electrochemically Assisted Coagulation of Wastes Polluted with Eriochrome Black T. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3474-3480	3.9	37
374	Is it really important the addition of salts for the electrolysis of soil washing effluents?. <i>Electrochimica Acta</i> , 2017 , 246, 372-379	6.7	36
373	Feasibility Of Coupling Permeable Bio-Barriers And Electrokinetics For The Treatment Of Diesel Hydrocarbons Polluted Soils. <i>Electrochimica Acta</i> , 2015 , 181, 192-199	6.7	36
372	Disinfection of urine by conductive-diamond electrochemical oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 63-70	21.8	36
371	On the applications of peroxodiphosphate produced by BDD-electrolyses. <i>Chemical Engineering Journal</i> , 2013 , 233, 8-13	14.7	36
370	A wind-powered BDD electrochemical oxidation process for the removal of herbicides. <i>Journal of Environmental Management</i> , 2015 , 158, 36-9	7.9	36
369	Use of neurofuzzy networks to improve wastewater flow-rate forecasting. <i>Environmental Modelling and Software</i> , 2009 , 24, 686-693	5.2	36

(2006-2016)

368	What happens to inorganic nitrogen species during conductive diamond electrochemical oxidation of real wastewater?. <i>Electrochemistry Communications</i> , 2016 , 67, 65-68	5.1	36
367	Removal of pesticide 2,4-D by conductive-diamond photoelectrochemical oxidation. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 733-739	21.8	35
366	Electrochemical Degradation of the Reactive Red 141 Dye Using a Boron-Doped Diamond Anode. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	35
365	Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. <i>Chemosphere</i> , 2017 , 166, 540-548	8.4	35
364	Combined adsorption and electrochemical processes for the treatment of acidic aqueous phenol wastes. <i>Journal of Applied Electrochemistry</i> , 2004 , 34, 111-117	2.6	35
363	Development of an innovative approach for low-impact wastewater treatment: A microfluidic flow-through electrochemical reactor. <i>Chemical Engineering Journal</i> , 2018 , 351, 766-772	14.7	35
362	Removal of pendimethalin from soil washing effluents using electrolytic and electro-irradiated technologies based on diamond anodes. <i>Applied Catalysis B: Environmental</i> , 2017 , 213, 190-197	21.8	34
361	Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes. <i>Chemosphere</i> , 2018 , 199, 445-452	8.4	34
360	A microfluidic flow-through electrochemical reactor for wastewater treatment: A proof-of-concept. <i>Electrochemistry Communications</i> , 2017 , 82, 85-88	5.1	34
359	Towards the scale up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-generation of H2O2. <i>Journal of Cleaner Production</i> , 2019 , 211, 1259-1267	10.3	33
358	Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 225-231	3.5	33
357	The jet aerator as oxygen supplier for the electrochemical generation of H2O2. <i>Electrochimica Acta</i> , 2017 , 246, 466-474	6.7	33
356	Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. <i>Separation and Purification Technology</i> , 2015 , 149, 24-30	8.3	33
355	Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 21828-21836	6.7	33
354	Conductive-Diamond Electrochemical Oxidation of Surfactant-Aided Soil-Washing Effluents. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 9631-9635	3.9	33
353	Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 269-274	21.8	33
352	Modelling of wastewater electrocoagulation processesPart I. General description and application to kaolin-polluted wastewaters. <i>Separation and Purification Technology</i> , 2008 , 60, 155-161	8.3	33
351	Detoxification of synthetic industrial wastewaters using electrochemical oxidation with boron-doped diamond anodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 352-358	3.5	33

350	Energy recovery from winery wastewater using a dual chamber microbial fuel cell. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1802-1808	3.5	33
349	Influence of sludge age on the performance of MFC treating winery wastewater. <i>Chemosphere</i> , 2016 , 151, 163-70	8.4	33
348	Selection of cheap electrodes for two-compartment microbial fuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 785, 235-240	4.1	32
347	Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. <i>Fuel</i> , 2015 , 140, 209-216	7.1	32
346	Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 516-524	21.8	32
345	Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. Water Research, 2016 , 99, 16-23	12.5	32
344	Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes. <i>Ultrasonics Sonochemistry</i> , 2017 , 34, 115-122	8.9	31
343	Removal of 2,4,6-Trichlorophenol from Spiked Clay Soils by Electrokinetic Soil Flushing Assisted with Granular Activated Carbon Permeable Reactive Barrier. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 840-846	3.9	31
342	Reduction of aeration costs by tuning a multi-set point on/off controller: A case study. <i>Control Engineering Practice</i> , 2011 , 19, 1231-1237	3.9	31
341	Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. <i>Journal of Power Sources</i> , 2011 , 196, 4306-4313	8.9	31
340	UV assisted electrochemical technologies for the removal of oxyfluorfen from soil washing wastes. <i>Chemical Engineering Journal</i> , 2017 , 318, 2-9	14.7	30
339	Electrokinetic flushing with surrounding electrode arrangements for the remediation of soils that are polluted with 2,4-D: A case study in a pilot plant. <i>Science of the Total Environment</i> , 2016 , 545-546, 256-65	10.2	30
338	Electrolysis of progesterone with conductive-diamond electrodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 1173-1178	3.5	30
337	Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. <i>Chemosphere</i> , 2008 , 72, 1080-5	8.4	30
336	Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid. <i>Chemosphere</i> , 2017 , 182, 85-89	8.4	30
335	Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. <i>Chemosphere</i> , 2016 , 163, 562-568	8.4	30
334	Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. Journal of Environmental Management, 2016 , 171, 260-266	7.9	29
333	Influence of electric field on the remediation of polluted soil using a biobarrier assisted electro-bioremediation process. <i>Electrochimica Acta</i> , 2016 , 190, 294-304	6.7	29

332	High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 8442-50	5.1	29	
331	Sonoelectrolysis of Wastewaters Polluted with Dimethyl Phthalate. <i>Industrial & Dimeering Chemistry Research</i> , 2013 , 52, 9674-9682	3.9	29	
330	Modelling of wastewater electrocoagulation processes: Part II: Application to dye-polluted wastewaters and oil-in-water emulsions. <i>Separation and Purification Technology</i> , 2008 , 60, 147-154	8.3	29	
329	Use of DiaCell modules for the electro-disinfection of secondary-treated wastewater with diamond anodes. <i>Chemical Engineering Journal</i> , 2016 , 306, 433-440	14.7	29	
328	Assessing the performance of electrochemical oxidation using DSA and BDD anodes in the presence of UVC light. <i>Chemosphere</i> , 2020 , 238, 124575	8.4	29	
327	Improving biodegradability of soil washing effluents using anodic oxidation. <i>Bioresource Technology</i> , 2018 , 252, 1-6	11	28	
326	Vanadium redox flow batteries for the storage of electricity produced in wind turbines. <i>International Journal of Energy Research</i> , 2018 , 42, 720-730	4.5	28	
325	Effect of a direct electric current on the activity of a hydrocarbon-degrading microorganism culture used as the flushing liquid in soil remediation processes. <i>Separation and Purification Technology</i> , 2014 , 124, 217-223	8.3	28	
324	Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. <i>Separation and Purification Technology</i> , 2014 , 135, 110-116	8.3	28	
323	Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater. <i>Electrochimica Acta</i> , 2014 , 140, 396-403	6.7	28	
322	Towards the scale-up of bioelectrogenic technology: stacking microbial fuel cells to produce larger amounts of electricity. <i>Journal of Applied Electrochemistry</i> , 2017 , 47, 1115-1125	2.6	28	
321	Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. <i>Environmental Technology (United Kingdom)</i> , 2017 , 38, 1333-1341	2.6	28	
320	Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell. <i>Biotechnology Progress</i> , 2015 , 31, 900-7	2.8	28	
319	Testing a Vapour-fed PBI-based Direct Ethanol Fuel Cell. Fuel Cells, 2009 , 9, 597-604	2.9	28	
318	Combined electrooxidation and assisted electrochemical coagulation of aqueous phenol wastes. Journal of Applied Electrochemistry, 2002 , 32, 1241-1246	2.6	28	
317	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with linear rows of electrodes. <i>Chemical Engineering Journal</i> , 2016 , 294, 65-72	14.7	28	
316	Review of Anodic Catalysts for SO2 Depolarized Electrolysis for Green Hydrogen Production. <i>Catalysts</i> , 2019 , 9, 63	4	28	
315	On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. <i>Separation and Purification Technology</i> , 2019 , 208, 123-129	8.3	28	

314	Electro-bioremediation at the prototype scale: What it should be learned for the scale-up. <i>Chemical Engineering Journal</i> , 2018 , 334, 2030-2038	14.7	28
313	Enhancement of Electrode Stability Using Platinum-Cobalt Nanocrystals on a Novel Composite SiCTiC Support. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 5927-5936	9.5	27
312	Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. <i>Chemosphere</i> , 2015 , 136, 281-8	8.4	27
311	Removal of pharmaceuticals from the urine of polymedicated patients: A first approach. <i>Chemical Engineering Journal</i> , 2018 , 331, 606-614	14.7	27
310	Technical and economic comparison of conventional and electrochemical coagulation processes. Journal of Chemical Technology and Biotechnology, 2009 , 84, 702-710	3.5	27
309	Electro-osmotic fluxes in multi-well electro-remediation processes. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 1549-5	7 ^{2.3}	27
308	Energy saving in the aeration process by fuzzy logic control. <i>Water Science and Technology</i> , 1998 , 38, 209	2.2	27
307	Isobaric VaporIliquid Equilibria of the Water + 1-Propanol System at 30, 60, and 100 kPa. <i>Journal of Chemical & Data</i> , 1996, 41, 1176-1180	2.8	27
306	Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater. <i>Separation and Purification Technology</i> , 2019 , 208, 201-207	8.3	27
305	Improving of Micro Porous Layer based on Advanced Carbon Materials for High Temperature Proton Exchange Membrane Fuel Cell Electrodes. <i>Fuel Cells</i> , 2015 , 15, 375-383	2.9	26
304	A new strategy for the electrolytic removal of organics based on adsorption onto granular activated carbon. <i>Electrochemistry Communications</i> , 2018 , 90, 47-50	5.1	26
303	Effect of air pressure on the electro-Fenton process at carbon felt electrodes. <i>Electrochimica Acta</i> , 2018 , 273, 447-453	6.7	26
302	Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 9028-9037	6.7	26
301	Coagulation and Electrocoagulation of Wastes Polluted with Colloids. <i>Separation Science and Technology</i> , 2007 , 42, 2157-2175	2.5	26
300	A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2. <i>International Journal of Hydrogen Energy</i> , 2006 , 31, 1780-1790	6.7	26
299	Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. <i>Chemosphere</i> , 2018 , 199, 477-485	8.4	25
298	A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells. <i>Bioresource Technology</i> , 2016 , 200, 396-404	11	25
297	Modelling and cost evaluation of electro-coagulation processes for the removal of anions from water. Separation and Purification Technology, 2013, 107, 219-227	8.3	25

(2018-2008)

296	The Role of the Characteristics of p-Si BDD Anodes on the Efficiency of Wastewater Electro-oxidation Processes. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, E15		25
295	Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers. <i>ISA Transactions</i> , 1999 , 38, 231-41	5.5	25
294	Scaling-up an integrated electrodisinfection-electrocoagulation process for wastewater reclamation. <i>Chemical Engineering Journal</i> , 2020 , 380, 122415	14.7	25
293	Improving the biodegradability of hospital urines polluted with chloramphenicol by the application of electrochemical oxidation. <i>Science of the Total Environment</i> , 2020 , 725, 138430	10.2	25
292	Combining bioadsorption and photoelectrochemical oxidation for the treatment of soil-washing effluents polluted with herbicide 2,4-D. <i>Journal of Chemical Technology and Biotechnology</i> , 2017 , 92, 83-89	3.5	24
291	Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). <i>Chemosphere</i> , 2019 , 232, 204-212	8.4	24
290	Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2,4-D. <i>Chemical Engineering Journal</i> , 2015 , 277, 64-69	14.7	24
289	Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2,4-dichlorophenoxyacetic acid. <i>Electrochimica Acta</i> , 2018 , 269, 415-421	6.7	24
288	Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels. <i>Renewable Energy</i> , 2017 , 114, 1123-1133	8.1	24
287	The salinity effects on the performance of a constructed wetland-microbial fuel cell. <i>Ecological Engineering</i> , 2017 , 107, 1-7	3.9	24
286	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 757, 144-149	4.1	24
285	Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. <i>Separation and Purification Technology</i> , 2012 , 98, 88-93	8.3	24
284	Energy saving in the aeration process by fuzzy logic control. <i>Water Science and Technology</i> , 1998 , 38, 209-217	2.2	24
283	Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 857, 113756	4.1	24
282	Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. <i>Separation and Purification Technology</i> , 2019 , 208, 100-109	8.3	24
281	Microporous layer based on SiC for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2015 , 288, 288-295	8.9	23
280	The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. <i>Electrochemistry Communications</i> , 2018 , 89, 19-22	5.1	23
279	Influence of the ion-exchange membrane on the performance of double-compartment microbial fuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 808, 427-432	4.1	23

278	Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. <i>Separation and Purification Technology</i> , 2017 , 175, 428-434	8.3	23
277	Study of the production of hydrogen bubbles at low current densities for electroflotation processes. <i>Journal of Chemical Technology and Biotechnology</i> , 2010 , 85, 1368-1373	3.5	23
276	Electrochemical synthesis of ferrate in presence of ultrasound using boron doped diamond anodes. <i>Electrochemistry Communications</i> , 2010 , 12, 644-646	5.1	23
275	Evaluation of a simple batch distillation process for treating wastes from metalworking industries. Journal of Chemical Technology and Biotechnology, 2004 , 79, 533-539	3.5	23
274	Influence of the doping level of boron-doped diamond anodes on the removal of penicillin G from urine matrixes. <i>Science of the Total Environment</i> , 2020 , 736, 139536	10.2	23
273	The Role of the Anode Material in Selective Penicillin G Oxidation in Urine. <i>ChemElectroChem</i> , 2019 , 6, 1376-1384	4.3	23
272	Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. <i>Catalysis Today</i> , 2017 , 280, 192-198	5.3	22
271	Electrocoagulation as the Key for an Efficient Concentration and Removal of Oxyfluorfen from Liquid Wastes. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 3091-3097	3.9	22
270	Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation. <i>Ultrasonics Sonochemistry</i> , 2015 , 22, 493-8	8.9	22
269	Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. <i>Chemosphere</i> , 2020 , 248, 126029	8.4	22
268	Operating the CabECOI membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. <i>Separation and Purification Technology</i> , 2019 , 208, 110-115	8.3	22
267	Feasibility of electrokinetic oxygen supply for soil bioremediation purposes. <i>Chemosphere</i> , 2014 , 117, 382-7	8.4	22
266	Electrochemical removal of dimethyl phthalate with diamond anodes. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 282-289	3.5	22
265	Photo-assisted electrochemical degradation of the dimethyl phthalate ester on DSAII electrode. Journal of Environmental Chemical Engineering, 2014 , 2, 811-818	6.8	22
264	Influence of the Type of Surfactant on the Mobility of Flushing Fluids for Electro-Remediation Processes. <i>Separation Science and Technology</i> , 2011 , 46, 2148-2156	2.5	22
263	Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. <i>Applied Energy</i> , 2018 , 225, 52-59	10.7	22
262	Bioelectro-Claus processes using MFC technology: Influence of co-substrate. <i>Bioresource Technology</i> , 2015 , 189, 94-98	11	21
261	Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. <i>Separation and Purification Technology</i> , 2018 , 192, 196-204	8.3	21

(2020-2018)

260	Optimization of the performance of a microbial fuel cell using the ratio electrode-surface area / anode-compartment volume. <i>Brazilian Journal of Chemical Engineering</i> , 2018 , 35, 141-146	1.7	21
259	Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 7889-7	897	21
258	Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO-RuOTiO anode. <i>Chemosphere</i> , 2020 , 244, 125455	8.4	21
257	Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. <i>Separation and Purification Technology</i> , 2020 , 237, 116345	8.3	21
256	Electro-disinfection with BDD-electrodes featuring PEM technology. <i>Separation and Purification Technology</i> , 2020 , 248, 117081	8.3	20
255	Toward the Development of Efficient Electro-Fenton Reactors for Soil Washing Wastes through Microfluidic Cells. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 10709-10717	3.9	20
254	Bioelectricity generation in a self-sustainable Microbial Solar Cell. <i>Bioresource Technology</i> , 2014 , 159, 451-4	11	20
253	Novel electrodialysisBlectrochlorination integrated process for the reclamation of treated wastewaters. <i>Separation and Purification Technology</i> , 2014 , 132, 362-369	8.3	20
252	Electro-oxidation of As(III) with dimensionally-stable and conductive-diamond anodes. <i>Journal of Hazardous Materials</i> , 2012 , 203-204, 22-8	12.8	20
251	On the Effects of Ferricyanide as Cathodic Mediator on the Performance of Microbial Fuel Cells. <i>Electrocatalysis</i> , 2017 , 8, 59-66	2.7	20
250	Effect of the continuous and pulse in situ iron addition onto the performance of an integrated electrochemical bzone reactor for wastewater treatment. <i>Fuel</i> , 2013 , 110, 133-140	7.1	20
249	Improvements in the Electrochemical Production of Ferrates with Conductive Diamond Anodes Using Goethite as Raw Material and Ultrasound. <i>Industrial & Diamong Chemistry Research</i> , 2011 , 50, 7073-7076	3.9	20
248	Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with the surrounding arrangements of electrodes. <i>Science of the Total Environment</i> , 2016 , 559, 94-102	10.2	20
247	A mesocosm study of electrokinetic-assisted phytoremediation of atrazine-polluted soils. <i>Separation and Purification Technology</i> , 2020 , 233, 116044	8.3	20
246	A Critical View of Microbial Fuel Cells: What Is the Next Stage?. ChemSusChem, 2018, 11, 4183-4192	8.3	20
245	Driving force behind electrochemical performance of microbial fuel cells fed with different substrates. <i>Chemosphere</i> , 2018 , 207, 313-319	8.4	20
244	Treatment of Soil-Washing Effluents Polluted with Herbicide Oxyfluorfen by Combined BiosorptionElectrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 1903-1910	3.9	19
243	Electro-ozonizers: A new approach for an old problem. <i>Separation and Purification Technology</i> , 2020 , 241, 116701	8.3	19

242	Electrokinetic transport of diesel-degrading microorganisms through soils of different textures using electric fields. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2012 , 47, 274-9	2.3	19
241	A COMPARATIVE STUDY OF ELECTROCOAGULATION AND CHEMICAL COAGULATION PROCESSES APPLIED FOR WASTEWATER TREATMENT. <i>Environmental Engineering and Management Journal</i> , 2012 , 11, 1517-1525	0.6	19
240	Photoelectrocatalytic Oxidation of Methyl Orange on a TiO2 Nanotubular Anode Using a Flow Cell. <i>Chemical Engineering and Technology</i> , 2016 , 39, 135-141	2	19
239	Can CabECO technology be used for the disinfection of highly faecal-polluted surface water?. <i>Chemosphere</i> , 2018 , 209, 346-352	8.4	19
238	Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. <i>Electrochimica Acta</i> , 2019 , 308, 45-53	6.7	18
237	Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 1719-1726	3.5	18
236	Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. <i>Science of the Total Environment</i> , 2020 , 725, 138379	10.2	18
235	The Treatment of Actual Industrial Wastewaters Using Electrochemical Techniques. <i>Electrocatalysis</i> , 2013 , 4, 252-258	2.7	18
234	Arsenic Removal from High-Arsenic Water Sources by Coagulation and Electrocoagulation. <i>Separation Science and Technology</i> , 2013 , 48, 508-514	2.5	18
233	Conductive-diamond electrochemical oxidation of chlorpyrifos in wastewater and identification of its main degradation products by LC-TOFMS. <i>Chemosphere</i> , 2012 , 89, 1169-76	8.4	18
232	Electrochemical Synthesis of Peroxyacetic Acid Using Conductive Diamond Electrodes. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 10889-10893	3.9	18
231	Influence of soil texture on the electrokinetic transport of diesel-degrading microorganisms. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 914-9	2.3	18
230	Removal of oxyfluorfen from spiked soils using electrokinetic fences. <i>Separation and Purification Technology</i> , 2016 , 167, 55-62	8.3	18
229	Enhanced electrolytic treatment for the removal of clopyralid and lindane. <i>Chemosphere</i> , 2019 , 234, 137	281.48	17
228	Reversible electrokinetic adsorption barriers for the removal of organochlorine herbicide from spiked soils. <i>Science of the Total Environment</i> , 2018 , 640-641, 629-636	10.2	17
227	Using a new photo-reactor to promote conductive-diamond electrochemical oxidation of dimethyl phthalate. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 1251-1258	3.5	17
226	Electrochemical coagulation of treated wastewaters for reuse. <i>Desalination and Water Treatment</i> , 2013 , 51, 3381-3388		17
225	Composite Titanium Silicon Carbide as a Promising Catalyst Support for High-Temperature Proton-Exchange Membrane Fuel Cell Electrodes. <i>ChemCatChem</i> , 2016 , 8, 848-854	5.2	17

(2019-2019)

224	Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. <i>Separation and Purification Technology</i> , 2019 , 212, 376-387	8.3	17	
223	Removal of 2,4-D herbicide in soils using a combined process based on washing and adsorption electrochemically assisted. <i>Separation and Purification Technology</i> , 2018 , 194, 19-25	8.3	17	
222	ZVI Reactive barriers for the remediation of soils polluted with clopyralid: Are they really Worth?. <i>Chemical Engineering Journal</i> , 2018 , 350, 100-107	14.7	17	
221	Powering with Solar Energy the Anodic Oxidation of Wastewater Polluted with Pesticides. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8303-8309	8.3	16	
220	Electrolysis with diamond anodes: Eventually, there are refractory species!. <i>Chemosphere</i> , 2018 , 195, 771-776	8.4	16	
219	Life test of a high temperature PEM fuel cell prepared by electrospray. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 20294-20304	6.7	16	
218	Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres. <i>ChemSusChem</i> , 2016 , 9, 1187-93	8.3	16	
217	Effect of polarity reversal on the enhanced electrokinetic remediation of 2,4-D-polluted soils: A numerical study. <i>Electrochimica Acta</i> , 2017 , 258, 414-422	6.7	16	
216	The influence of sludge retention time on mixed culture microbial fuel cell start-ups. <i>Biochemical Engineering Journal</i> , 2017 , 123, 38-44	4.2	15	
215	Optimization of the performance of an airBathode MFC by changing solid retention time. <i>Journal of Chemical Technology and Biotechnology</i> , 2017 , 92, 1746-1755	3.5	15	
214	Coupling Photo and Sono Technologies with BDD Anodic Oxidation for Treating Soil-Washing Effluent Polluted with Atrazine. <i>Journal of the Electrochemical Society</i> , 2018 , 165, E262-E267	3.9	15	
213	Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. <i>Journal of Environmental Management</i> , 2019 , 248, 109289	7.9	15	
212	Biophotonic ring resonator for ultrasensitive detection of DMMP as a simulant for organophosphorus agents. <i>Analytical Chemistry</i> , 2014 , 86, 5125-30	7.8	15	
211	Purification of Wet-Process Phosphoric Acid by Hydrogen Peroxide Oxidation, Activated Carbon Adsorption and Electrooxidation. <i>Chemical Engineering and Technology</i> , 2005 , 28, 193-198	2	15	
210	The Effect of Sludge Age on the Deterioration of the Enhanced Biological Phosphorus Removal Process. <i>Environmental Technology (United Kingdom)</i> , 1999 , 20, 1055-1063	2.6	15	
209	New insights about the electrochemical production of ozone. <i>Current Opinion in Electrochemistry</i> , 2021 , 27, 100697	7.2	15	
208	Effects of coupling hybrid processes on the treatment of wastewater containing a commercial mixture of diuron and hexazinone herbicides. <i>Electrochimica Acta</i> , 2019 , 328, 135013	6.7	15	
207	Strategies for the electrobioremediation of oxyfluorfen polluted soils. <i>Electrochimica Acta</i> , 2019 , 297, 137-144	6.7	15	

206	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. <i>Chemosphere</i> , 2018 , 207, 774-780	8.4	15
205	Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 871, 114291	4.1	14
204	Towards the scale-up of electrolysis with diamond anodes: effect of stacking on the electrochemical oxidation of 2,4 D. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 742-74	7 ^{3.5}	14
203	Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil. Journal of Environmental Management, 2016 , 171, 128-132	7.9	14
202	Influence of the methodology of inoculation in the performance of air-breathing microbial fuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 803, 81-88	4.1	14
201	An easy parameter estimation procedure for modeling a HT-PEMFC. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 11308-11320	6.7	14
200	Application of . Chemical Engineering Science, 2006, 61, 4773-4782	4.4	14
199	Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents 2017 , 58,		14
198	A new electrochemically-based process for the removal of perchloroethylene from gaseous effluents. <i>Chemical Engineering Journal</i> , 2019 , 361, 609-614	14.7	14
197	Coupling Ultrasound to the Electro-Oxidation of Methyl Paraben Synthetic Wastewater: Effect of Frequency and Supporting Electrolyte. <i>ChemElectroChem</i> , 2019 , 6, 1199-1205	4.3	14
196	Improved electrolysis of colloid-polluted wastes using ultrasounds and electrocoagulation. <i>Separation and Purification Technology</i> , 2020 , 231, 115926	8.3	14
195	Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. <i>Chemosphere</i> , 2018 , 213, 244-251	8.4	14
194	Effects of ultrasound irradiation on the electrochemical treatment of wastes containing micelles. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 108-114	21.8	13
193	Is it worth the use of bipolar electrodes in electrolytic wastewater treatment processes?. <i>Chemical Engineering Journal</i> , 2015 , 264, 310-315	14.7	13
192	Testing and scaling-up of a novel Ti/Ru0.7Ti0.3O2 mesh anode in a microfluidic flow-through reactor. <i>Chemical Engineering Journal</i> , 2020 , 398, 125568	14.7	13
191	Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. <i>Electrochimica Acta</i> , 2018 , 274, 152-159	6.7	13
190	Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 19713-22	5.1	13
189	Durability study of HTPEMFC through current distribution measurements and the application of a model. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 21678-21687	6.7	13

(2011-2014)

188	Enhanced electrocoagulation: New approaches to improve the electrochemical process (Review). <i>Journal of Electrochemical Science and Engineering</i> , 2014 , 4,	1.9	13
187	Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 6937-6943	6.7	13
186	Electrochemical synthesis of perbromate using conductive-diamond anodes. <i>Journal of Applied Electrochemistry</i> , 2010 , 40, 1715-1719	2.6	13
185	New laser-based method for the synthesis of stable and active Ti/SnO2Bb anodes. <i>Electrochimica Acta</i> , 2020 , 332, 135478	6.7	13
184	Jet electro-absorbers for the treatment of gaseous perchloroethylene wastes. <i>Chemical Engineering Journal</i> , 2020 , 395, 125096	14.7	13
183	Techno-economic analysis of the scale-up process of electrochemically-assisted soil remediation. <i>Journal of Environmental Management</i> , 2019 , 231, 570-575	7.9	13
182	Electrokinetic-assisted phytoremediation of atrazine: Differences between electrode and interelectrode soil sections. <i>Separation and Purification Technology</i> , 2019 , 211, 19-27	8.3	13
181	Impact of carbonaceous particles concentration in a nanofluidic electrolyte for vanadium redox flow batteries. <i>Carbon</i> , 2020 , 156, 287-298	10.4	13
180	Testing different strategies for the remediation of soils polluted with lindane. <i>Chemical Engineering Journal</i> , 2020 , 381, 122674	14.7	13
179	Removal of chlorsulfuron and 2,4-D from spiked soil using reversible electrokinetic adsorption barriers. <i>Separation and Purification Technology</i> , 2017 , 178, 147-153	8.3	12
178	SiCTiC as catalyst support for HT-PEMFCs. Influence of Ti content. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 244-254	21.8	12
177	Electro-Absorbers: A Comparison on Their Performance with Jet-Absorbers and Absorption Columns. <i>Catalysts</i> , 2020 , 10, 653	4	12
176	Clopyralid degradation by AOPs enhanced with zero valent iron. <i>Journal of Hazardous Materials</i> , 2020 , 392, 122282	12.8	12
175	Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: A first approach. <i>Electrochimica Acta</i> , 2018 , 270, 14-21	6.7	12
174	Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes. <i>Catalysis Today</i> , 2018 , 313, 203-210	5.3	12
173	Life study of a PBI-PEM fuel cell by current distribution measurement. <i>Journal of Applied Electrochemistry</i> , 2012 , 42, 711-718	2.6	12
172	Costs estimation of an integrated process for the treatment of heavy-metal loaded aqueous effluents. <i>Journal of Applied Electrochemistry</i> , 2011 , 41, 1099-1107	2.6	12
171	Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. <i>Applied Catalysis B: Environmental</i> , 2011 , 106, 174-174	21.8	12

170	Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. <i>Journal of Environmental Management</i> , 2020 , 267, 110665	7.9	12
169	Microwave synthesis of Ti/(RuO2)0.5(IrO2)0.5 anodes: Improved electrochemical properties and stability. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 874, 114460	4.1	12
168	Novel Ti/RuOIrO anode to reduce the dangerousness of antibiotic polluted urines by Fenton-based processes. <i>Chemosphere</i> , 2021 , 270, 129344	8.4	12
167	Long-term effects of the transient COD concentration on the performance of microbial fuel cells. <i>Biotechnology Progress</i> , 2016 , 32, 883-90	2.8	12
166	Assessing the impact of design factors on the performance of two miniature microbial fuel cells. <i>Electrochimica Acta</i> , 2019 , 297, 297-306	6.7	12
165	The Role of Mediated Oxidation on the Electro-irradiated Treatment of Amoxicillin and Ampicillin Polluted Wastewater. <i>Catalysts</i> , 2019 , 9, 9	4	11
164	Improving biodegradability of clopyralid wastes by photoelectrolysis: The role of the anode material. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 864, 114084	4.1	11
163	Electro-oxidation of methyl paraben on DSAII -Cl2: UV irradiation, mechanistic aspects and energy consumption. <i>Electrochimica Acta</i> , 2020 , 338, 135901	6.7	11
162	Effect of sludge age on microbial consortia developed in MFCs. <i>Journal of Chemical Technology and Biotechnology</i> , 2018 , 93, 1290-1299	3.5	11
161	Removal of algae from biological cultures: a challenge for electrocoagulation?. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 82-87	3.5	11
160	Electro-irradiated technologies for clopyralid removal from soil washing effluents. <i>Separation and Purification Technology</i> , 2019 , 227, 115728	8.3	11
159	Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison. <i>Journal of Hazardous Materials</i> , 2009 , 168, 358-63	12.8	11
158	Removal of antibiotic resistant bacteria by electrolysis with diamond anodes: A pretreatment or a tertiary treatment?. <i>Journal of Water Process Engineering</i> , 2020 , 38, 101557	6.7	11
157	A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. <i>Current Opinion in Electrochemistry</i> , 2021 , 27, 100685	7.2	11
156	Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants. <i>Sustainable Environment Research</i> , 2016 , 26, 70-75	3.8	11
155	New prototypes for the isolation of the anodic chambers in microbial fuel cells. <i>Fuel</i> , 2016 , 181, 704-71	07.1	11
154	Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation. <i>Journal of Hazardous Materials</i> , 2019 , 372, 77-84	12.8	11
153	A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. <i>Chemosphere</i> , 2020 , 238, 124854	8.4	11

152	Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. <i>Separation and Purification Technology</i> , 2020 , 230, 115876	8.3	11
151	On the staking of miniaturized air-breathing microbial fuel cells. <i>Applied Energy</i> , 2018 , 232, 1-8	10.7	11
150	Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. <i>Separation and Purification Technology</i> , 2021 , 276, 119398	8.3	11
149	Fixed-bed biological barrier coupled with electrokinetics for the in situ electrobioremediation of 2,4-dichlorophenoxyacetic acid polluted soil. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 2684-2692	3.5	10
148	Carbon monoxide reactive separation with basic 1-hexyl-3-methylimidazolium chlorocuprate(I) ionic liquid: Electrochemical determination of mass transport properties. <i>Separation and Purification Technology</i> , 2015 , 141, 31-37	8.3	10
147	Optimization of a combined electrocoagulation-electroflotation reactor. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 9700-11	5.1	10
146	Influence of the Cathode Platinum Loading and of the Implementation of Membranes on the Performance of Air-Breathing Microbial Fuel Cells. <i>Electrocatalysis</i> , 2017 , 8, 442-449	2.7	10
145	Electrochemical regeneration of partially ethoxylated polyethylenimine used in the polymer-supported ultrafiltration of copper. <i>Journal of Hazardous Materials</i> , 2009 , 168, 25-30	12.8	10
144	Understanding ozone generation in electrochemical cells at mild pHs. <i>Electrochimica Acta</i> , 2021 , 376, 138033	6.7	10
143	The role of chloramines on the electrodisinfection of Klebsiella pneumoniae in hospital urines. <i>Chemical Engineering Journal</i> , 2021 , 409, 128253	14.7	10
142	A comparison of the electrolysis of soil washing wastes with active and non-active electrodes. <i>Chemosphere</i> , 2019 , 225, 19-26	8.4	10
141	Reproducibility and robustness of microbial fuel cells technology. <i>Journal of Power Sources</i> , 2019 , 412, 640-647	8.9	10
140	Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124548	12.8	10
139	Geotechnical behaviour of low-permeability soils in surfactant-enhanced electrokinetic remediation. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2016 , 51, 44-51	2.3	9
138	Can electro-bioremediation of polluted soils perform as a self-sustainable process?. <i>Journal of Applied Electrochemistry</i> , 2018 , 48, 579-588	2.6	9
137	Algal biomass as fuel for stacked-MFCs for profitable, sustainable and carbon neutral bioenergy generation. <i>Journal of Chemical Technology and Biotechnology</i> , 2018 , 93, 287-293	3.5	9
136	Integration of anodic and cathodic processes for the synergistic electrochemical production of peracetic acid. <i>Electrochemistry Communications</i> , 2016 , 73, 1-4	5.1	9
135	Anodic oxidation for the remediation of soils polluted with perchloroethylene. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 288-294	3.5	9

134	Can the substrate of the diamond anodes influence on the performance of the electrosynthesis of oxidants?. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 850, 113416	4.1	9
133	Biodegradability improvement and toxicity reduction of soil washing effluents polluted with atrazine by means of electrochemical pre-treatment: Influence of the anode material. <i>Journal of Environmental Management</i> , 2020 , 255, 109895	7.9	9
132	Electrochemically-based hybrid oxidative technologies for the treatment of micropollutants in drinking water. <i>Chemical Engineering Journal</i> , 2021 , 414, 128531	14.7	9
131	Integrating ZVI-dehalogenation into an electrolytic soil-washing cell. <i>Separation and Purification Technology</i> , 2019 , 211, 28-34	8.3	9
130	Improving photolytic treatments with electrochemical technology. <i>Separation and Purification Technology</i> , 2020 , 235, 116229	8.3	9
129	A tube-in-tube membrane microreactor for tertiary treatment of urban wastewaters by photo-Fenton at neutral pH: A proof of concept. <i>Chemosphere</i> , 2021 , 263, 128049	8.4	9
128	Outstanding performance of the microwave-made MMO-Ti/RuO2IrO2 anode on the removal of antimicrobial activity of Penicillin G by photoelectrolysis. <i>Chemical Engineering Journal</i> , 2021 , 420, 1299	9 191 .7	9
127	A review on disinfection technologies for controlling the antibiotic resistance spread. <i>Science of the Total Environment</i> , 2021 , 797, 149150	10.2	9
126	Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. <i>Journal of Environmental Management</i> , 2018 , 222, 135-140	7.9	8
125	Indirect Electrochemical Oxidation by Using Ozone, Hydrogen Peroxide, and Ferrate 2018 , 165-192		8
124	Dehalogenation of 2,4-Dichlorophenoxyacetic acid by means of bioelectrochemical systems. Journal of Electroanalytical Chemistry, 2019 , 854, 113564	4.1	8
123	Electrocoagulation as a key technique in the integrated urban water cycle IA case study in the centre of Spain. <i>Urban Water Journal</i> , 2017 , 14, 650-654	2.3	8
122	Influence of sludge age on enhanced phosphorus removal in biological systems. <i>Water Science and Technology</i> , 1996 , 34, 41-48	2.2	8
121	Influence of sludge age on enhanced phosphorus removal in biological systems. <i>Water Science and Technology</i> , 1996 , 34, 41	2.2	8
120	Prediction and management of solar energy to power electrochemical processes for the treatment of wastewater effluents. <i>Electrochimica Acta</i> , 2020 , 335, 135594	6.7	8
119	Degradation of endosulfan by a coupled treatments in a batch reactor with three electrodes. <i>Fuel</i> , 2020 , 281, 118741	7.1	8
118	Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. <i>Chemosphere</i> , 2021 , 271, 129451	8.4	8
117	Electrochemical production of perchlorate as an alternative for the valorization of brines. <i>Chemosphere</i> , 2019 , 220, 637-643	8.4	8

(2020-2019)

116	Improvement of the electro-bioremediation process of a non-polar herbicide-polluted soil by means of surfactant addition. <i>Science of the Total Environment</i> , 2019 , 650, 1961-1968	10.2	8
115	Improvement of electrochemical oxidation efficiency through combination with adsorption processes. <i>Journal of Environmental Management</i> , 2020 , 262, 110364	7.9	8
114	Improving sustainability of electrolytic wastewater treatment processes by green powering. <i>Science of the Total Environment</i> , 2021 , 754, 142230	10.2	8
113	Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 880, 114894	4.1	8
112	Electrochemical systems equipped with 2D and 3D microwave-made anodes for the highly efficient degradation of antibiotics in urine. <i>Electrochimica Acta</i> , 2021 , 392, 139012	6.7	8
111	Electrolysis with diamond anodes of the effluents of a combined soil washing - ZVI dechlorination process. <i>Journal of Hazardous Materials</i> , 2019 , 369, 577-583	12.8	7
110	Enhancement of wastewater treatment using novel laser-made Ti/SnO2Bb anodes with improved electrocatalytic properties. <i>Chemosphere</i> , 2020 , 259, 127475	8.4	7
109	Neuro-evolutionary modelling of the electrodeposition stage of a polymer-supported ultrafiltrationBlectrodeposition process for the recovery of heavy metals. <i>Environmental Modelling and Software</i> , 2013 , 42, 133-142	5.2	7
108	Isobaric Vaporlliquid Equilibria for Binary and Ternary Systems Composed of Water, 1-Propanol, and 2-Propanol at 100 kPa. <i>Journal of Chemical & Engineering Data</i> , 1996 , 41, 1379-1382	2.8	7
107	Synthesis and characterization of Pt on novel catalyst supports for the H2 production in the Westinghouse cycle. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 25672-25680	6.7	7
106	Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation. <i>Separation and Purification Technology</i> , 2020 , 237, 116366	8.3	7
105	Recent Progress in Catalysts for Hydrogen-Chlorine Regenerative Fuel Cells. <i>Catalysts</i> , 2020 , 10, 1263	4	7
104	Electrochemical generation of ozone using a PEM electrolyzer at acidic pHs. <i>Separation and Purification Technology</i> , 2021 , 267, 118672	8.3	7
103	Competitive Anodic Oxidation of Methyl Paraben and Propylene Glycol: Keys to Understand the Process. <i>ChemElectroChem</i> , 2019 , 6, 771-778	4.3	7
102	Storage of energy using a gas-liquid H/Cl fuel cell: A first approach to electrochemically-assisted absorbers. <i>Chemosphere</i> , 2020 , 254, 126795	8.4	6
101	Effect of the anode composition on the performance of reversible chlor-alkali electro-absorption cells. <i>Separation and Purification Technology</i> , 2020 , 248, 117017	8.3	6
100	On the Degradation of 17-Æstradiol Using Boron Doped Diamond Electrodes. <i>Processes</i> , 2020 , 8, 710	2.9	6
99	Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis. <i>Science of the Total Environment</i> , 2020 , 713, 136647	10.2	6

98	High-Stability Electrodes for High-Temperature Proton Exchange Membrane Fuel Cells by Using Advanced Nanocarbonaceous Materials. <i>ChemElectroChem</i> , 2017 , 4, 3288-3295	4.3	6
97	Improving the Efficiencies of Batch Coagulation Processes with Small Modifications in the pH. <i>Separation Science and Technology</i> , 2010 , 45, 1411-1417	2.5	6
96	Production of coagulant reagents for electro-coagulation processes at low current densities. <i>Desalination and Water Treatment</i> , 2012 , 45, 256-262		6
95	Donnan-ion hydration model to estimate the electroosmotic permeability of clays. <i>Electrochimica Acta</i> , 2020 , 355, 136758	6.7	6
94	Removal of oxyfluorfen from polluted effluents by combined bio-electro processes. <i>Chemosphere</i> , 2020 , 240, 124912	8.4	6
93	Is it worth using the coupled electrodialysis/electro-oxidation system for the removal of pesticides? Process modelling and role of the pollutant. <i>Chemosphere</i> , 2020 , 246, 125781	8.4	6
92	Toward more sustainable photovoltaic solar electrochemical oxidation treatments: Influence of hydraulic and electrical distribution. <i>Journal of Environmental Management</i> , 2021 , 285, 112064	7.9	6
91	Electrochemical dewatering for the removal of hazardous species from sludge. <i>Journal of Environmental Management</i> , 2019 , 233, 768-773	7.9	6
90	Biofilm and planktonic population distribution. Key aspects in carbonaceous anodes for microbial fuel cells. <i>Journal of Chemical Technology and Biotechnology</i> , 2018 , 93, 3436-3443	3.5	6
89	Soil Remediation by Electro-Fenton Process. <i>Handbook of Environmental Chemistry</i> , 2017 , 399-423	0.8	5
88	Electrobioremediation of Oxyfluorfen-Polluted Soil by Means of a Fixed-Bed Permeable Biological Barrier. <i>Water, Air, and Soil Pollution</i> , 2019 , 230, 1	2.6	5
87	How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes?. <i>Journal of Environmental Management</i> , 2020 , 265, 110566	7.9	5
86	Neuro-evolutionary approach applied for optimizing the PEMFC performance. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 4037-4043	6.7	5
85	Electrochemical Degradation of Dimethyl Phthalate Ester on a DSA Electrode. <i>Journal of the Brazilian Chemical Society</i> , 2014 ,	1.5	5
84	Disinfection of urines using an electro-ozonizer. <i>Electrochimica Acta</i> , 2021 , 382, 138343	6.7	5
83	Selection of anodic material for the combined electrochemical-biological treatment of lindane polluted soil washing effluents. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121237	12.8	5
82	Biostimulation versus bioaugmentation for the electro-bioremediation of 2,4-dichlorophenoxyacetic acid polluted soils. <i>Journal of Environmental Management</i> , 2021 , 277, 111424	4 ^{7.9}	5
81	Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes?. <i>Journal of Environmental Management</i> , 2021 , 279, 111597	7.9	5

(2021-2018)

Optimization of a cell for the electrochemical synergistic production of peroxoacetic acid. <i>Electrochimica Acta</i> , 2018 , 260, 177-183	6.7	5
Platinum Recovery Techniques for a Circular Economy. <i>Catalysts</i> , 2021 , 11, 937	4	5
Towards a more realistic heterogeneous electro-Fenton. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 895, 115475	4.1	5
Reactor design as a critical input in the electrochemical production of peroxoacetic acid. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 2955-2960	3.5	4
Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. <i>Environmental Research</i> , 2020 , 188, 109747	7.9	4
Thermally-treated algal suspensions as fuel for microbial fuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 814, 77-82	4.1	4
Are electrochemical fences effective in the retention of pollution?. <i>Separation and Purification Technology</i> , 2018 , 201, 19-24	8.3	4
Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 825, 1-7	4.1	4
Development of a novel electrochemical coagulant dosing unit for water treatment. <i>Journal of Chemical Technology and Biotechnology</i> , 2019 , 94, 216-221	3.5	4
Microbial Fuel Cell: The Definitive Technological Approach for Valorizing Organic Wastes. <i>Handbook of Environmental Chemistry</i> , 2014 , 287-316	0.8	4
Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. <i>Open Chemistry</i> , 2013 , 11, 1213-1224	1.6	4
Assembly of a Multiphase Bioreactor for Laboratory Demonstrations: Study of the Oxygen-Transfer Efficiency in Activated Sludge. <i>The Chemical Educator</i> , 2002 , 7, 90-95		4
Characterization of PBI/Graphene Oxide Composite Membranes for the SO Depolarized Electrolysis at High Temperature <i>Membranes</i> , 2022 , 12,	3.8	4
Electro-oxidation of tetracycline in methanol media on DSAII -Cl. <i>Chemosphere</i> , 2021 , 273, 129696	8.4	4
Bio-electrocatalytic dechlorination of 2,4-dichlorophenol. Effect of pH and operational configuration. <i>Electrochimica Acta</i> , 2021 , 367, 137456	6.7	4
Promoting the formation of Co (III) electrocatalyst with diamond anodes. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 882, 115007	4.1	4
First approaches for hydrogen production by the depolarized electrolysis of SO2 using phosphoric acid doped polybenzimidazole membranes. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 29763-20	9773	4
Scale-up of electrokinetic permeable reactive barriers for the removal of organochlorine herbicide from spiked soils. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126078	12.8	4
	Platinum Recovery Techniques for a Circular Economy. Catalysts, 2021, 11, 937 Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475 Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960 Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. Environmental Research, 2020, 188, 109747 Thermally-treated algal suspensions as fuel for microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 814, 77-82 Are electrochemical fences effective in the retention of pollution?. Separation and Purification Technology, 2018, 201, 19-24 Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 825, 1-7 Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221 Microbial Fuel Cell: The Definitive Technological Approach for Valorizing Organic Wastes. Handbook of Environmental Chemistry, 2014, 287-316 Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. Open Chemistry, 2013, 11, 1213-1224 Assembly of a Multiphase Bioreactor for Laboratory Demonstrations: Study of the Oxygen-Transfer Efficiency in Activated Sludge. The Chemical Educator, 2002, 7, 90-95 Characterization of PBI/Graphene Oxide Composite Membranes for the SO Depolarized Electrolysis at High Temperature Membranes, 2022, 12, 12, 126-127, 137-137-137. 137-137-137-137-137-137-137-137-137-137-	Platinum Recovery Techniques for a Circular Economy. Catalysts, 2021, 11, 937 4. Towards a more realistic heterogeneous electro-Fenton. Journal of Electroanalytical Chemistry, 2021, 895, 115475 Reactor design as a critical input in the electrochemical production of peroxoacetic acid. Journal of Chemical Technology and Biotechnology, 2019, 94, 2955-2960 Biodegradability improvement of clopyralid wastes through electrolysis using different diamond anodes. Environmental Research, 2020, 188, 109747 Thermally-treated algal suspensions as fuel for microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 814, 77-82 Are electrochemical fences effective in the retention of pollution?. Separation and Purification Technology, 2018, 201, 19-24 Influence of the initial sludge characteristics and acclimation on the long-term performance of double-compartment acetate-fed microbial fuel cells. Journal of Electroanalytical Chemistry, 2018, 825, 1-7 Development of a novel electrochemical coagulant dosing unit for water treatment. Journal of Chemical Technology and Biotechnology, 2019, 94, 216-221 3-5 Development of characteristive Technological Approach for Valorizing Organic Wastes. Handbook of Environmental Chemistry, 2014, 287-316 Optimization methodology based on neural networks and genetic algorithms applied to electro-coagulation processes. Open Chemistry, 2013, 11, 1213-1224 Assembly of a Multiphase Bioreactor for Laboratory Demonstrations: Study of the Oxygen-Transfer Efficiency in Activated Sludge. The Chemical Educator, 2002, 7, 90-95 Characterization of PBI/Graphene Oxide Composite Membranes for the SO Depolarized Electrolysis at High Temperature. Membranes, 2022, 12, Electro-oxidation of tetracycline in methanol media on DSAB -CL. Chemosphere, 2021, 273, 129696 8-4 Bio-electrocatalytic dechlorination of 2,4-dichlorophenol. Effect of pH and operational configuration. Electrochimica Acta, 2021, 367, 137456 6-7 First approaches for hydrogen production by the depolarized electrolysis of SO2 us

62	Are we correctly targeting the research on disinfection of antibiotic-resistant bacteria (ARB)?. <i>Journal of Cleaner Production</i> , 2021 , 320, 128865	10.3	4
61	Production of Strong Oxidizing Substances with BDD Anodes 2011 , 281-310		3
60	Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. <i>Molecules</i> , 2021 , 26,	4.8	3
59	Electrocatalytic dechlorination of 2,4-dichlorophenol in bioelectrochemical systems. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 876, 114731	4.1	3
58	Modelling of the treatment of wastewater by photovoltaic solar electrochemical oxidation (PSEO) assisted by redox-flow batteries. <i>Journal of Water Process Engineering</i> , 2021 , 40, 101974	6.7	3
57	Management of solar energy to power electrochemical wastewater treatments. <i>Journal of Water Process Engineering</i> , 2021 , 41, 102056	6.7	3
56	Improving the degradation of low concentration of microcystin-LR with PEM electrolyzers and photo-electrolyzers. <i>Separation and Purification Technology</i> , 2021 , 259, 118189	8.3	3
55	Assessing the viability of electro-absorption and photoelectro-absorption for the treatment of gaseous perchloroethylene. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 23657-23666	5.1	3
54	On the production of ozone, hydrogen peroxide and peroxone in pressurized undivided electrochemical cells. <i>Electrochimica Acta</i> , 2021 , 390, 138878	6.7	3
53	Comparison of the performance of packed column and jet electro-scrubbers for the removal of toluene. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106114	6.8	3
52	Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. <i>Chemosphere</i> , 2021 , 284, 131303	8.4	3
51	Production of Chlorine Dioxide Using Hydrogen Peroxide and Chlorates. <i>Catalysts</i> , 2021 , 11, 1478	4	3
50	Importance of Electrode Tailoring in the Coupling of Electrolysis with Renewable Energy. <i>ChemElectroChem</i> , 2020 , 7, 2925-2932	4.3	2
49	Water Remediation. <i>Journal of Chemistry</i> , 2017 , 2017, 1-2	2.3	2
48	Influence of hydraulic retention time and carbon loading rate on the production of algae. <i>Journal of Biotechnology</i> , 2018 , 282, 70-79	3.7	2
47	High levofloxacin removal in the treatment of synthetic human urine using Ti/MMO/ZnO photo-electrocatalyst. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 107317	6.8	2
46	Towards the Electrochemical Retention of CO2: Is it Worth it?. ChemElectroChem, 2021, 8, 3947-3953	4.3	2
45	Towards the optimization of electro-bioremediation of soil polluted with 2,4-dichlorophenoxyacetic acid. <i>Environmental Technology and Innovation</i> , 2020 , 20, 101156	7	2

44	Prescale-Up of Electro-Bioremediation Processes 2016 ,		2
43	Ultra-fast synthesis of Ti/Ru0.3Ti0.7O2 anodes with superior electrochemical properties using an ionic liquid and laser calcination. <i>Chemical Engineering Journal</i> , 2021 , 416, 129011	14.7	2
42	Continuous electro-scrubbers for the removal of perchloroethylene: Keys for selection. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 892, 115267	4.1	2
41	Chloralkali low temperature PEM reversible electrochemical cells. <i>Electrochimica Acta</i> , 2021 , 387, 13854	Z .7	2
40	Treatment of toluene gaseous streams using packed column electro-scrubbers and cobalt mediators. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 895, 115500	4.1	2
39	Platinum: A key element in electrode composition for reversible chloralkaline electrochemical cells. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 32602-32611	6.7	2
38	Cobalt mediated electro-scrubbers for the degradation of gaseous perchloroethylene. <i>Chemosphere</i> , 2021 , 279, 130525	8.4	2
37	Electrochemical treatment of soil-washing effluent with boron-doped diamond electrodes: A review. <i>Current Opinion in Solid State and Materials Science</i> , 2021 , 25, 100962	12	2
36	Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge. <i>Journal of Environmental Management</i> , 2020 , 258, 110015	7.9	1
35	Treatment of Cu/Zn wastes by combined PSU-electrodeposition processes. <i>Journal of Environmental Management</i> , 2013 , 116, 181-5	7.9	1
34	Treatment of actual metalworking wastewaters by coagulation combined with electrochemical oxidation. <i>International Journal of Environmental Engineering</i> , 2009 , 1, 238	0.2	1
33	Achievement and electrochemical responsiveness of advanced boron-doped ultrananocrystalline diamond on highly ordered titanium dioxide nanotubes. <i>Diamond and Related Materials</i> , 2022 , 121, 1087	7 3 ·3	1
32	Electrospray Deposition of Catalyst Layers with Ultralow Pt Loading for Cost-Effective H Production by SO Electrolysis <i>ACS Applied Energy Materials</i> , 2022 , 5, 2138-2149	6.1	1
31	Exploring the pressurized heterogeneous electro-Fenton process and modelling the system. <i>Chemical Engineering Journal</i> , 2021 , 431, 133280	14.7	1
30	Bisphenol-S removal via photoelectro-fenton/H2O2 process using Co-porphyrin/Printex L6 gas diffusion electrode. <i>Separation and Purification Technology</i> , 2022 , 285, 120299	8.3	1
29	Scale-up of Ru-based mesh anodes for the degradation of synthetic hospital wastewater. <i>Separation and Purification Technology</i> , 2022 , 285, 120260	8.3	1
28	CONDUCTIVE-DIAMOND ELECTROCHEMICAL OXIDATION OF A PHARMACEUTICAL EFFLUENT WITH HIGH CHEMICAL OXYGEN DEMAND (COD). KINETICS AND OPTIMIZATION OF THE PROCESS BY RESPONSE SURFACE METHODOLOGY (RSM). Environmental Engineering and Management	0.6	1
27	Journal, 2016, 15, 27-34 Relevance of gaseous flows in electrochemically assisted soil thermal sremediation. Current Opinion in Electrochemistry, 2021, 27, 100698	7.2	1

26	Electrokinetic Remediation of Soils Polluted with Pesticides: Flushing and Fence Technologies 2016 ,		1
25	Fundamental of Electrokinetic Processes. <i>Environmental Pollution</i> , 2021 , 29-41	Ο	1
24	Is ozone production able to explain the good performance of CabECO technology in wastewater treatment?. <i>Electrochimica Acta</i> , 2021 , 396, 139262	6.7	1
23	Valorization of high-salinity effluents for CO fixation and hypochlorite generation. <i>Chemosphere</i> , 2021 , 285, 131359	8.4	1
22	Modelling electro-scrubbers for removal of VOCs. <i>Separation and Purification Technology</i> , 2021 , 277, 119419	8.3	1
21	Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes?. <i>Science of the Total Environment</i> , 2022 , 803, 149991	10.2	1
20	Electrochemical degradation of a methyl paraben and propylene glycol mixture: Interference effect of competitive oxidation and pH stability. <i>Chemosphere</i> , 2022 , 287, 132229	8.4	1
19	Electrolytic removal of volatile organic compounds: Keys to understand the process. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 912, 116259	4.1	1
18	The integration of ZVI-dehalogenation and electrochemical oxidation for the treatment of complex effluents polluted with iodinated compounds. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107587	6.8	1
17	Enhancing soil vapor extraction with EKSF for the removal of HCHs Chemosphere, 2022 , 296, 134052	8.4	1
16	Production of value-added substances from the electrochemical oxidation of volatile organic compounds in methanol medium. <i>Chemical Engineering Journal</i> , 2022 , 440, 135803	14.7	1
15	Toward real applicability of electro-ozonizers: Paying attention to the gas phase using actual commercial PEM electrolyzers technology. <i>Chemosphere</i> , 2021 , 289, 133141	8.4	O
14	Electrochemically Assisted Soil Washing for the Remediation of Non-polar and Volatile Pollutants. <i>Current Pollution Reports</i> , 2021 , 7, 180-193	7.6	O
13	Electroscrubbers for removing volatile organic compounds and odorous substances from polluted gaseous streams. <i>Current Opinion in Electrochemistry</i> , 2021 , 28, 100718	7.2	O
12	Electrochemical Production of Hydrogen Peroxide in Perchloric Acid Supporting Electrolytes for the Synthesis of Chlorine Dioxide <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3263-3271	3.9	O
11	Full and Sustainable Electrochemical Production of Chlorine Dioxide. <i>Catalysts</i> , 2022 , 12, 315	4	O
10	Using solar power regulation to electrochemically capture carbon dioxide: Process integration and case studies. <i>Energy Reports</i> , 2022 , 8, 4957-4963	4.6	0
9	Influence of current density and inlet gas flow in the treatment of gaseous streams polluted with benzene by electro-absorption. <i>Electrochimica Acta</i> , 2022 , 423, 140610	6.7	O

LIST OF PUBLICATIONS

8	Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media. <i>Catalysts</i> , 2022 , 12, 602	4	O
7	Combination of granular activated carbon adsorption and electrochemical oxidation processes in methanol medium for benzene removal. <i>Electrochimica Acta</i> , 2022 , 140681	6.7	O
6	Enhancement of SO2 high temperature depolarized electrolysis by means of graphene oxide composite polybenzimidazole membranes. <i>Journal of Cleaner Production</i> , 2022 , 363, 132372	10.3	O
5	Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants 2010 , 99-124		
4	Improving stability of chloralkaline high-temperature PBI-PEMFCs. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 904, 115940	4.1	
3	Evaluation of Goethite as a Catalyst for the Thermal Stage of the Westinghouse Process for Hydrogen Production. <i>Catalysts</i> , 2021 , 11, 1145	4	
2	Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. <i>Chemosphere</i> , 2022 , 287, 132334	8.4	
1	On the way to raising the technology readiness level of diamond electrolysis. <i>Current Opinion in Electrochemistry</i> , 2022 , 33, 100928	7.2	