List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8386833/publications.pdf Version: 2024-02-01

FLZBIETA ERACKOWIAK

#	Article	lF	CITATIONS
1	Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39, 937-950.	5.4	4,099
2	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	11.1	2,152
3	Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007, 9, 1774.	1.3	1,772
4	Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 2002, 40, 1775-1787.	5.4	1,011
5	Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources, 2006, 153, 413-418.	4.0	885
6	Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochimica Acta, 2005, 50, 2499-2506.	2.6	718
7	Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy and Environmental Science, 2012, 5, 5842-5850.	15.6	695
8	Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43, 1293-1302.	5.4	658
9	Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters, 2000, 77, 2421-2423.	1.5	652
10	Carbon nanotubes and their composites in electrochemical applications. Energy and Environmental Science, 2011, 4, 1592.	15.6	535
11	Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001, 347, 36-40.	1.2	488
12	Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. Journal of Physics and Chemistry of Solids, 2004, 65, 295-301.	1.9	485
13	Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon, 1999, 37, 61-69.	5.4	428
14	Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50, 2799-2805.	2.6	399
15	Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta, 2004, 49, 515-523.	2.6	396
16	Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors. Journal of the Electrochemical Society, 2005, 152, A229.	1.3	361
17	High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Applied Physics A: Materials Science and Processing, 2006, 82, 567-573.	1.1	339
18	Effect of nitrogen in carbon electrode on the supercapacitor performance. Chemical Physics Letters, 2005, 404, 53-58.	1.2	334

#	Article	IF	CITATIONS
19	Nanotubular materials for supercapacitors. Journal of Power Sources, 2001, 97-98, 822-825.	4.0	317
20	Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content. Electrochimica Acta, 2006, 51, 2209-2214.	2.6	308
21	Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta, 2005, 50, 1197-1206.	2.6	300
22	Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Applied Physics A: Materials Science and Processing, 2004, 78, 981-987.	1.1	299
23	A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends. Advanced Materials, 2005, 17, 2380-2384.	11.1	298
24	Carbon/carbon supercapacitors. Journal of Energy Chemistry, 2013, 22, 226-240.	7.1	275
25	Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters, 2002, 361, 35-41.	1.2	267
26	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
27	Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21, 437-454.	8.3	255
28	Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 2001, 46, 2777-2780.	2.6	248
29	Striking capacitance of carbon/iodide interface. Electrochemistry Communications, 2009, 11, 87-90.	2.3	248
30	Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochemistry Communications, 2007, 9, 1828-1832.	2.3	239
31	Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochimica Acta, 2008, 53, 2210-2216.	2.6	222
32	Capacitance properties of ordered porous carbon materials prepared by a templating procedure. Journal of Physics and Chemistry of Solids, 2004, 65, 287-293.	1.9	218
33	In vitro studies of carbon nanotubes biocompatibility. Carbon, 2006, 44, 1106-1111.	5.4	206
34	Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy and Environmental Science, 2016, 9, 623-633.	15.6	204
35	Redox-active electrolyte for supercapacitor application. Faraday Discussions, 2014, 172, 179-198.	1.6	177
36	Room-temperature phosphonium ionic liquids for supercapacitor application. Applied Physics Letters, 2005, 86, 164104.	1.5	169

ELZBIETA FRACKOWIAK

#	Article	IF	CITATIONS
37	Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 148-155.	1.7	168
38	Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochemistry Communications, 2011, 13, 38-41.	2.3	166
39	The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Applied Surface Science, 2004, 228, 84-92.	3.1	164
40	Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochimica Acta, 2014, 140, 132-138.	2.6	152
41	Electrochemistry Serving People and Nature: Highâ€Energy Ecocapacitors based on Redoxâ€Active Electrolytes. ChemSusChem, 2012, 5, 1181-1185.	3.6	148
42	Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon, 2015, 81, 148-157.	5.4	144
43	Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Physical Chemistry Chemical Physics, 2012, 14, 8199.	1.3	126
44	Nanotubular materials as electrodes for supercapacitors. Fuel Processing Technology, 2002, 77-78, 213-219.	3.7	125
45	Carbon nanotubes with Pt–Ru catalyst for methanol fuel cell. Electrochemistry Communications, 2006, 8, 129-132.	2.3	123
46	Carbon/Layered Double Hydroxide (LDH) Composites for Supercapacitor Application. Energy & Fuels, 2010, 24, 3346-3351.	2.5	120
47	Unusual energy enhancement in carbon-based electrochemical capacitors. Journal of Materials Chemistry, 2012, 22, 24213.	6.7	115
48	Correlation of the irreversible lithium capacity with the active surface area of modified carbons. Carbon, 2005, 43, 2160-2167.	5.4	112
49	The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. Journal of Chemical Physics, 2003, 118, 6038-6045.	1.2	111
50	High surface area carbon nanotubes prepared by chemical activation. Carbon, 2002, 40, 1614-1617.	5.4	107
51	Fabrication of network films of conducting polymer-linked polyoxometallate-stabilized carbon nanostructures. Electrochimica Acta, 2006, 51, 2373-2379.	2.6	101
52	Supercapacitors based on carbon materials and ionic liquids. Journal of the Brazilian Chemical Society, 2006, 17, 1074-1082.	0.6	100
53	Electrochemical properties of supercapacitors operating in aqueous electrolyte with surfactants. Electrochimica Acta, 2010, 55, 7484-7488.	2.6	97
54	Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochimica Acta, 2012, 86, 282-286.	2.6	97

ELZBIETA FRACKOWIAK

#	Article	IF	CITATIONS
55	State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium. Carbon, 2006, 44, 2392-2398.	5.4	96
56	Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. Journal of Power Sources, 1999, 81-82, 317-322.	4.0	89
57	In Situ 7Li-Nuclear Magnetic Resonance Observation of Reversible Lithium Insertion into Disordered Carbons. Electrochemical and Solid-State Letters, 2003, 6, A225.	2.2	88
58	Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis. Electrochemical and Solid-State Letters, 2001, 4, A27.	2.2	84
59	Supercapacitors: Carbons and Electrolytes for Advanced Supercapacitors (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2283-2283.	11.1	81
60	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	5.4	77
61	Interfacial Redox Phenomena for Enhanced Aqueous Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A5140-A5147.	1.3	75
62	Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications. Energy and Environmental Science, 2022, 15, 1156-1171.	15.6	74
63	Carbon materials modified by plasma treatment as electrodes for supercapacitors. Journal of Power Sources, 2010, 195, 7535-7539.	4.0	73
64	High performance of symmetric micro-supercapacitors based on silicon nanowires using N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide as electrolyte. Nano Energy, 2014, 9, 273-281.	8.2	71
65	Hybrid materials for supercapacitor application. Journal of Solid State Electrochemistry, 2010, 14, 811-816.	1.2	70
66	Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons. Electrochimica Acta, 2006, 51, 2161-2167.	2.6	67
67	Synthesis and Properties of Trigeminal Tricationic Ionic Liquids. Chemistry - A European Journal, 2007, 13, 3106-3112.	1.7	67
68	High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles. Journal of Nanoscience and Nanotechnology, 2002, 2, 481-484.	0.9	66
69	Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes. Electrochimica Acta, 2016, 206, 496-503.	2.6	66
70	The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons. Journal of Physics and Chemistry of Solids, 2004, 65, 245-251.	1.9	64
71	Structural and electrochemical characterisation of nitrogen enriched carbons produced by the co-pyrolysis of coal-tar pitch with polyacrylonitrile. Electrochimica Acta, 2004, 49, 423-432.	2.6	64
72	Electrochemical storage of hydrogen in activated carbons. Fuel Processing Technology, 2002, 77-78, 415-421.	3.7	59

ELZBIETA FRACKOWIAK

#	Article	IF	CITATIONS
73	Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chemical Physics Letters, 2006, 421, 409-414.	1.2	59
74	Carbon-based electrochemical capacitors with acetate aqueous electrolytes. Electrochimica Acta, 2016, 215, 179-186.	2.6	57
75	Self-buffered pH at carbon surfaces in aqueous supercapacitors. Carbon, 2018, 129, 758-765.	5.4	56
76	Carbon/λ-MnO2 composites for supercapacitor electrodes. Journal of Solid State Chemistry, 2010, 183, 969-974.	1.4	55
77	Agar-based aqueous electrolytes for electrochemical capacitors with reduced self-discharge. Electrochimica Acta, 2020, 332, 135435.	2.6	54
78	Enhancement of the carbon electrode capacitance by brominated hydroquinones. Journal of Power Sources, 2016, 326, 587-594.	4.0	52
79	Redox active electrolytes in carbon/carbon electrochemical capacitors. Current Opinion in Electrochemistry, 2018, 9, 95-105.	2.5	52
80	Strategies for enhancing the performance of carbon/carbon supercapacitors in aqueous electrolytes. Electrochimica Acta, 2014, 128, 210-217.	2.6	48
81	Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. Journal of Power Sources, 2016, 326, 652-659.	4.0	48
82	A better understanding of the irreversible lithium insertion mechanisms in disordered carbons. Journal of Physics and Chemistry of Solids, 2004, 65, 211-217.	1.9	47
83	Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4 and LiNO3 electrolytes. Carbon, 2017, 120, 281-293.	5.4	46
84	Effect of surfactants on capacitance properties of carbon electrodes. Electrochimica Acta, 2012, 60, 206-212.	2.6	45
85	High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chemical Physics Letters, 2007, 434, 73-77.	1.2	43
86	Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Materials, 2019, 22, 1-14.	9.5	43
87	Engaging nanoporous carbons in "beyond adsorption―applications: Characterization, challenges and performance. Carbon, 2020, 164, 69-84.	5.4	41
88	The effect of halide ion concentration on capacitor performance. Journal of Applied Electrochemistry, 2014, 44, 439-445.	1.5	40
89	Comparative Study of Two Protic Ionic Liquids as Electrolyte for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2014, 161, A228-A238.	1.3	39
90	Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors. Energy Storage Materials, 2016, 5, 111-115.	9.5	39

#	Article	IF	CITATIONS
91	An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chemical Physics Letters, 2005, 404, 374-378.	1.2	37
92	Sorption and desorption of lithium ions from activated carbons. Carbon, 1996, 34, 481-487.	5.4	35
93	Effects of post-treatments on the performance of hard carbons in lithium cells. Journal of Power Sources, 2001, 97-98, 143-145.	4.0	31
94	Influence of the Pyrolysis Conditions on the Nature of Lithium Inserted in Hard Carbons. Journal of Physical Chemistry A, 2001, 105, 5794-5800.	1.1	30
95	Pseudocapacitance Effects for Enhancement of Capacitor Performance. Fuel Cells, 2010, 10, 848-855.	1.5	30
96	Ageing mechanisms in electrochemical capacitors with aqueous redox-active electrolytes. Electrochimica Acta, 2019, 311, 211-220.	2.6	30
97	Hybrid aqueous capacitors with improved energy/power performance. Progress in Natural Science: Materials International, 2015, 25, 642-649.	1.8	29
98	Electrochemical capacitor with water-based electrolyte operating at wide temperature range. Journal of Power Sources, 2019, 414, 183-191.	4.0	29
99	Electrochemical capacitors as attractive power sources. Solid State Ionics, 2014, 265, 61-67.	1.3	28
100	Mechanisms of the performance fading of carbon-based electrochemical capacitors operating in a LiNO3 electrolyte. Journal of Power Sources, 2019, 438, 227029.	4.0	27
101	Template-derived high surface area λ-MnO2 for supercapacitor applications. Journal of Applied Electrochemistry, 2014, 44, 123-132.	1.5	26
102	Specific carbon/iodide interactions in electrochemical capacitors monitored by EQCM technique. Energy and Environmental Science, 2021, 14, 2381-2393.	15.6	25
103	Passivation of zinc in alkaline solution effected by chromates and CrO3–graphite system. Journal of Power Sources, 1998, 73, 175-181.	4.0	23
104	Determination of the space between closed multiwalled carbon nanotubes by GCMC simulation of nitrogen adsorption. Journal of Colloid and Interface Science, 2008, 317, 442-448.	5.0	23
105	Interfacial aspects induced by saturated aqueous electrolytes in electrochemical capacitor applications. Electrochimica Acta, 2020, 334, 135572.	2.6	23
106	Clay/Carbon Nanocomposites as Precursors of Electrode Materials for Lithium-Ion Batteries and Supercapacitors. Molecular Crystals and Liquid Crystals, 2000, 340, 449-454.	0.3	22
107	Mechanism of lithium electrosorption by activated carbons. Electrochimica Acta, 2002, 47, 1545-1553.	2.6	22
108	Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes. Electrochimica Acta, 2013, 98, 94-103.	2.6	22

#	Article	IF	CITATIONS
109	Towards sustainable power sources: chitin-bound carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 22923-22930.	5.2	22
110	Synergy of components in supercapacitors based on nanotube/polypyrrole composites. Molecular Crystals and Liquid Crystals, 2002, 387, 73-78.	0.4	21
111	Towards more Durable Electrochemical Capacitors by Elucidating the Ageing Mechanisms under Different Testing Procedures. ChemElectroChem, 2019, 6, 566-573.	1.7	21
112	Lithium insertion into boron containing carbons prepared by co-pyrolysis of coal–tar pitch and borane–pyridine complex. Journal of Physics and Chemistry of Solids, 2004, 65, 153-158.	1.9	20
113	Electrochemical capacitors operating in aqueous electrolyte with volumetric characteristics improved by sustainable templating of electrode materials. Electrochimica Acta, 2020, 338, 135788.	2.6	20
114	Link between Alkali Metals in Salt Templates and in Electrolytes for Improved Carbon-Based Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 2584-2599.	4.0	20
115	Annealing of template nanotubes to well-graphitized multi-walled carbon nanotubes. Carbon, 2006, 44, 814-818.	5.4	19
116	Application of the rotating disk electrode for the investigation of polycrystalline zinc in concentrated alkaline solutions with admixture of polyethylene glycol. Electrochimica Acta, 1988, 33, 441-443.	2.6	18
117	Vanadium-oxygen cell for positive electrolyte discharge in dual-circuit vanadium redox flow battery. Journal of Power Sources, 2019, 439, 227075.	4.0	17
118	Supercapacitor with Carbon/MoS2 Composites. Frontiers in Energy Research, 2021, 9, .	1.2	16
119	Continuous fast Fourier transform admittance voltammetry as a new approach for studying the change in morphology of polyaniline for supercapacitors application. RSC Advances, 2015, 5, 84076-84083.	1.7	15
120	Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochimica Acta, 2019, 314, 1-8.	2.6	15
121	Lithium Insertion in Carbon Nanotubes. Molecular Crystals and Liquid Crystals, 2000, 340, 547-552.	0.3	14
122	Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications. Journal of Materials Chemistry A, 2017, 5, 22708-22716.	5.2	14
123	Novel carbons from nanocomposites for high lithium storage. Journal of Power Sources, 1999, 81-82, 323-327.	4.0	13
124	Electrical Double-Layer Capacitors and Pseudocapacitors. Advanced Materials and Technologies, 2009, , 329-375.	0.4	13
125	Electrochemical polarization of activated carbons for the reversible sorption of lithium ions. Fuel, 1998, 77, 571-575.	3.4	11
126	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	1.6	11

#	Article	IF	CITATIONS
127	Fast response supercapacitor based on carbon-VS2 electrodes with a wide operating voltage range. Energy Storage Materials, 2022, 49, 255-267.	9.5	10
128	Nanoporous H-sorbed carbon as anode of secondary cell. Journal of Power Sources, 2009, 188, 617-620.	4.0	9
129	Correlation of hydrogen capacity in carbon material with the parameters of electrosorption. Open Chemistry, 2011, 9, 20-24.	1.0	9
130	New Trends in Electrochemical Capacitors. Advances in Inorganic Chemistry, 2018, 72, 247-286.	0.4	9
131	High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in-situ formed cobalt nanoparticles. Journal of Nanoscience and Nanotechnology, 2002, 2, 481-4.	0.9	9
132	Operando monitoring of activated carbon electrodes operating with aqueous electrolytes. Energy Storage Materials, 2022, 49, 518-528.	9.5	9
133	Anticorrosive performance of green deep eutectic solvent for electrochemical capacitor. Chemical Engineering Journal, 2022, 444, 136594.	6.6	9
134	Lithium insertion/deinsertion of boron doped graphitic carbons synthesized by different procedure. Journal of Physics and Chemistry of Solids, 2008, 69, 1179-1181.	1.9	8
135	Determination of accurate electrode contribution during voltammetry scan of electrochemical capacitors. Journal of Solid State Electrochemistry, 2018, 22, 2135-2139.	1.2	8
136	The influence of polyethylene glycol on some properties of zinc electrodes. Electrochimica Acta, 1984, 29, 1359-1363.	2.6	7
137	Electrochemical Redox Capacity of Thermally Exfoliated Graphite in Sulfuric Acid. Molecular Crystals and Liquid Crystals, 1994, 244, 221-226.	0.3	7
138	Interaction between electroconducting polymers and C60. Journal of Physics and Chemistry of Solids, 1996, 57, 983-989.	1.9	7
139	Guest–host interaction in energy storage systems. Journal of Physics and Chemistry of Solids, 2010, 71, 692-695.	1.9	7
140	The Carbon/Iodide Interface in Protic Ionic Liquid Medium for Application in Supercapacitors. ECS Transactions, 2014, 61, 21-30.	0.3	7
141	Enhancing capacitor lifetime by alternate constant polarization. Journal of Power Sources, 2021, 506, 230131.	4.0	7
142	Redox activity from the electrolyte and electrode in electrochemical capacitors. Electrochemistry Communications, 2022, 138, 107289.	2.3	7
143	HOPG as a host for redox reactions with FeCl4â ^{~,} in water medium. Synthetic Metals, 1995, 73, 27-32.	2.1	6
144	Electrochemical synthesis of iron supported on exfoliated graphite. Journal of Physics and Chemistry of Solids, 1996, 57, 841-847.	1.9	6

#	Article	IF	CITATIONS
145	Value Quantification of Electrochemical Capacitor Active Material. Journal of the Electrochemical Society, 2017, 164, A2732-A2737.	1.3	6
146	Electrochemical Capacitor Performance of Nanotextured Carbon/Transition Metal Dichalcogenides Composites. Small, 2021, 17, e2006821.	5.2	6
147	Electrochemical Application of Carbon Nanotubes. , 2003, , 305-318.		6
148	Nanotextured Carbons for Electrochemical Energy Storage. , 2006, , .		6
149	Mechanism of Lithium Insertion in Different Kinds of Carbons. Molecular Crystals and Liquid Crystals, 1998, 310, 359-364.	0.3	5
150	DEVELOPMENT OF SUPERCAPACITORS BASED ON CONDUCTING POLYMERS. , 2006, , 41-50.		5
151	Redox Activity of Bromides in Carbonâ€Based Electrochemical Capacitors. Batteries and Supercaps, 2020, 3, 1080-1090.	2.4	5
152	Influence of Pyrolysis Conditions on the Performance of Hard Carbons as Anodes for Lithium Batteries. Molecular Crystals and Liquid Crystals, 2000, 340, 431-436.	0.3	4
153	Boronated mesophase pitch coke for lithium insertion. Journal of Power Sources, 2001, 97-98, 140-142.	4.0	4
154	Carbon Nanotubes as Backbones for Composite Electrodes of Supercapacitors. AIP Conference Proceedings, 2004, , .	0.3	4
155	Electrode/Electrolyte Interface with Various Redox Couples. ECS Transactions, 2014, 61, 1-8.	0.3	4
156	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	1.6	4
157	NOVEL CARBONACEOUS MATERIALS FOR APPLICATION IN THE ELECTROCHEMICAL SUPERCAPACITORS. , 2006, , 5-20.		4
158	Advantages of Electrochemical Hydrogen Storage over Gas Adsorption in Nanoporous Carbons. European Journal of Control, 2005, 30, 531-539.	1.6	4
159	Influence of polyaniline on electrode materials. Advanced Materials for Optics and Electronics, 1998, 8, 303-308.	0.6	3
160	The effect of 1,2-dimethoxyethane on the storage and performance of lithium cells with MnO2 and (CF) cathodes. Journal of Power Sources, 1998, 72, 174-177.	4.0	3
161	Capacitance properties of carbon nanotubes. , 1999, , .		3
162	Quinone/hydroquinone redox couple as a source of enormous capacitance of activated carbon electrodes. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	3

#	Article	IF	CITATIONS
163	Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions. Journal Physics D: Applied Physics, 2017, 50, 415502.	1.3	3
164	Carbon Fluoride Cathode for Lithium Cells. , 1996, , 85-100.		3
165	Polypropylene fibre material as a carrier for nickel electrodes. Journal of Power Sources, 1994, 50, 21-25.	4.0	2
166	Carbon Fluoride Cathode Modified by Electroconducting Polymers. Molecular Crystals and Liquid Crystals, 1998, 310, 403-408.	0.3	2
167	Designing nanostructured carbons for the negative electrode of lithium batteries. Molecular Crystals and Liquid Crystals, 2002, 386, 151-157.	0.4	2
168	Application Of Metal Coated Carbon Nanotubes To Direct Methanol Fuel Cells And For The Formation Of Nanowires. AIP Conference Proceedings, 2004, , .	0.3	2
169	Carbon Nanotubes for Storage of Energy. , 2004, , .		2
170	Effect of surfactants on capacitance properties of carbon electrodes. Materials Research Society Symposia Proceedings, 2011, 1333, 110701.	0.1	2
171	Carbon Nanotubes for Storage of Energy. , 2008, , 707-721.		2
172	Advanced characterization techniques for electrochemical capacitors. Advances in Inorganic Chemistry, 2022, , 151-207.	0.4	2
173	Electrochemical properties of Lithiated Carbons. Molecular Crystals and Liquid Crystals, 1998, 310, 365-370.	0.3	1
174	Storage of energy in supercapacitors from nanotubes. AIP Conference Proceedings, 2000, , .	0.3	1
175	Nanotubes Based Composites for Energy Storage in Supercapacitors. Advances in Science and Technology, 2006, 51, 145-155.	0.2	1
176	High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochimica Acta, 2022, 424, 140649.	2.6	1
177	Improvement of Secondary Zinc Electrodes. , 1995, , 41-46.		0
178	Alkali-metal intercalation in carbon nanotubes. , 1999, , .		0
179	Effect of Heteroatoms on Lithium Insertion into Carbons. Molecular Crystals and Liquid Crystals, 2000, 340, 511-516.	0.3	0

180 Carbon-Based Nanomaterials for Electrochemical Energy Storage. , 0, , 177-204.

#	Article	IF	CITATIONS
181	Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications. Materials Research Society Symposia Proceedings, 2014, 1679, 12.	0.1	0
182	Nanotextured Carbons for Electrochemical Energy Storage. Advanced Materials and Technologies, 2006, , 295-319.	0.4	0
183	Electrochemical Capacitor Performance of Nanotextured Carbon/Transition Metal Dichalcogenides Composites (Small 48/2021). Small, 2021, 17, 2170255.	5.2	0
184	Redox Mediated Electrolytes in Electrochemical Capacitors. , 0, , .		0
185	Investigation on various emission colours in composite materials based on carbon and luminophors doped with lanthanide ions. Polyhedron, 2022, 223, 115953.	1.0	0