Hirohmi Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8386744/publications.pdf

Version: 2024-02-01

43 papers 762 citations

16 h-index 27 g-index

44 all docs 44 docs citations

times ranked

44

809 citing authors

#	Article	IF	CITATIONS
1	Specific Deformation Behavior of Isotactic Polypropylene Films under Multiaxial Stress Field. Soft Matter, 2022, , .	2.7	2
2	Effect of Oligomer Segregation on the Aggregation State and Strength at the Polystyrene/Substrate Interface. ACS Macro Letters, 2022, 11, 504-509.	4.8	7
3	Advantages of bulge testing and rupture mechanism of glassy polymer films. Polymer, 2019, 179, 121632.	3.8	17
4	Nanomembranes as a substrate for ultra-thin lightweight devices. Thin Solid Films, 2019, 676, 8-11.	1.8	6
5	Photocurable Urushiol Analogues Bearing Methacryloxy-Containing Side chains. Langmuir, 2019, 35, 4534-4539.	3.5	10
6	<i>In situ</i> synchrotron radiation X-ray diffraction studies on molecular aggregation structure of nylon 12 films during bulge testing. Soft Matter, 2018, 14, 1659-1664.	2.7	13
7	Biobased Coatings Based on Eugenol Derivatives. ACS Applied Bio Materials, 2018, 1, 808-813.	4.6	19
8	Liquid Marbles from Polymer Particles: Formation Mechanism, Physical Characterizations, and Applications. Kobunshi Ronbunshu, 2017, 74, 26-35.	0.2	3
9	Biobased Polymer Coating Using Catechol Derivative Urushiol. Langmuir, 2016, 32, 4619-4623.	3.5	45
10	X-ray Computerized Tomography Observation of the Interfacial Structure of Liquid Marbles. Bulletin of the Chemical Society of Japan, 2015, 88, 84-88.	3.2	13
11	Spray-Assisted Nanocoating of the Biobased Material Urushiol. Langmuir, 2015, 31, 2360-2365.	3.5	20
12	One-step nanopatterning of conjugated polymers by electron-beam-assisted electropolymerization. Microscopy (Oxford, England), 2015, 64, 205-212.	1.5	6
13	Preparation and characterization of looped polydimethylsiloxane brushes. Polymer Journal, 2014, 46, 117-122.	2.7	13
14	Scaffold for Growing Dense Polymer Brushes from a Versatile Substrate. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3648-3653.	8.0	28
15	Surface texturing of natural â€~urushi' thermosetting polymer thin films. Polymer Journal, 2014, 46, 216-219.	2.7	16
16	Surface Functionalization by Decal-like Transfer of Thermally Cross-Linked Urushiol Thin Films. ACS Applied Materials & Interfaces, 2014, 6, 18517-18524.	8.0	23
17	Liquid Marbles Supported by Monodisperse Poly(methylsilsesquioxane) Particles. Langmuir, 2014, 30, 9071-9075.	3.5	43
18	Effect of Water Swelling on the Tribological Properties of PMMA Spin-Cast Film and Brush in Aqueous Environment. Tribology Letters, 2014, 55, 121-129.	2.6	4

#	Article	lF	Citations
19	Polymer Brush Growth from Surface-textured Thin Urushiol Films. Chemistry Letters, 2014, 43, 1776-1778.	1.3	1
20	Characterization of catecholâ€containing natural thermosetting polymer "urushiol―thin film. Journal of Polymer Science Part A, 2013, 51, 3688-3692.	2.3	47
21	Preparation of poly(lactic-acid)-particle stabilized liquid marble and the improvement of its stability by uniform shell formation through solvent vapor exposure. RSC Advances, 2013, 3, 7862.	3.6	33
22	Concealing Surface Topography by Attachment of Nanometer-Thick Film. Langmuir, 2013, 29, 2906-2911.	3.5	4
23	Robust Liquid Marbles Stabilized with Surface-Modified Halloysite Nanotubes. Langmuir, 2013, 29, 14971-14975.	3.5	51
24	Stabilization of Liquid Droplet Covered with Hydrophobic Polymer Particles. Journal of the Japan Society of Colour Material, 2013, 86, 50-56.	0.1	0
25	Manipulation of surface properties: the use of nanomembrane as a nanometre-thick decal. Soft Matter, 2011, 7, 1856-1860.	2.7	19
26	Preparation of Low-Surface-Energy Poly[2-(perfluorooctyl)ethyl acrylate] Microparticles and Its Application to Liquid Marble Formation. Langmuir, 2011, 27, 1269-1274.	3.5	62
27	Giant nanomembrane of covalently-hybridized epoxy resin and silica. Journal of Materials Chemistry, 2009, 19, 2425.	6.7	34
28	Fabrication of Large Nanomembranes by Radical Polymerization of Multifunctional Acrylate Monomers. Polymer Journal, 2008, 40, 379-382.	2.7	9
29	Spatial Disposition of Dye Molecules within Metal Oxide Nanotubes. Chemistry of Materials, 2008, 20, 4998-5004.	6.7	14
30	Fabrication of Large, Free-standing Nanofilms of Platinum and Platinum–Palladium Alloy. Chemistry Letters, 2007, 36, 288-289.	1.3	7
31	Development of Fabrication of Giant Nanomembranes. Bulletin of the Chemical Society of Japan, 2007, 80, 433-440.	3.2	39
32	Fabrication of Large, Robust Nanomembranes from Diverse, Cross-Linked Polymeric Materials. Macromolecules, 2007, 40, 1369-1371.	4.8	28
33	A Large, Freestanding, 20 nm Thick Nanomembrane Based on an Epoxy Resin. Advanced Materials, 2007, 19, 909-912.	21.0	58
34	Spatial Forcing of Selfâ€Organized Microwrinkles by Periodic Nanopatterns. Advanced Materials, 2007, 19, 3229-3232.	21.0	40
35	Fabrication of Segmented Cavity Films and Their Application to Nanocomposite Materials. Chemistry of Materials, 2005, 17, 3600-3605.	6.7	3
36	Reactions of Vinyl Ethers and Application to Photoreactive Process. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 341-359.	0.3	6

#	Article	IF	CITATIONS
37	Photo-alignment material with azobenzene-functionalized polymer linked in film. Polymers for Advanced Technologies, 2002, 13, 558-565.	3.2	7
38	Carbazole as Photo-Sensitizer in Photoresist Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 263-264.	0.3	1
39	Water-dispersible microgel modified with methacryloyl groups by ionic bonding on the surface and the photopolymer microgel. Polymers for Advanced Technologies, 2000, 11, 307-315.	3.2	0
40	Water-dispersed Photopolymer Microgels with Core-Shell Structure Modified by Glycidyl Methacrylate Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 759-767.	0.3	3
41	Mechanism of Acid-Catalyzed Crosslinking Reaction with Hydroxyethyl Group and Application to Microlithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 303-306.	0.3	4
42	Divinyloxyalkane Cross-linker on DUV Photoresist Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1998, 11, 537-540.	0.3	3
43	The Role of Vinyl Groups and Quaternary Amino Groups on Microgel Particle Surface in Photopolymer System Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1998, 11, 77-80.	0.3	1