Neil R Branda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8386363/publications.pdf

Version: 2024-02-01

46918 54797 7,291 98 47 84 citations h-index g-index papers 110 110 110 6464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-Infrared Light-Triggered Dissociation of Block Copolymer Micelles Using Upconverting Nanoparticles. Journal of the American Chemical Society, 2011, 133, 19714-19717.	6.6	428
2	Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles. Journal of the American Chemical Society, 2012, 134, 16558-16561.	6.6	388
3	Photoregulation of Fluorescence in a Porphyrinic Dithienylethene Photochrome. Journal of the American Chemical Society, 2001, 123, 1784-1785.	6.6	332
4	Two-Way Photoswitching Using One Type of Near-Infrared Light, Upconverting Nanoparticles, and Changing Only the Light Intensity. Journal of the American Chemical Society, 2010, 132, 15766-15772.	6.6	293
5	Electrochromism in Photochromic Dithienylcyclopentenes. Journal of the American Chemical Society, 2003, 125, 3404-3405.	6.6	221
6	Remote-Control Photoswitching Using NIR Light. Journal of the American Chemical Society, 2009, 131, 10838-10839.	6.6	216
7	Remoteâ€Control Photorelease of Caged Compounds Using Nearâ€Infrared Light and Upconverting Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 3782-3785.	7.2	206
8	1,2-Dithienylethene Photochromes and Non-destructive Erasable Memory. Advanced Functional Materials, 2002, 12, 167.	7.8	199
9	Chiral Discrimination in Photochromic Helicenes. Journal of the American Chemical Society, 2005, 127, 7272-7273.	6.6	195
10	Nondestructive Data Processing Based on Chiroptical 1,2-Dithienylethene Photochromes. Angewandte Chemie - International Edition, 2001, 40, 1752-1755.	7.2	167
11	Control of Self-Assembly and Reversible Encapsulation of Xenon in a Self-Assembling Dimer by Acid-Base Chemistry. Journal of the American Chemical Society, 1995, 117, 85-88.	6.6	156
12	A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism. Journal of the American Chemical Society, 2009, 131, 15966-15967.	6.6	151
13	Photoswitching of Stereoselectivity in Catalysis Using a Copper Dithienylethene Complex. Angewandte Chemie - International Edition, 2005, 44, 2019-2021.	7.2	147
14	Chiral Discrimination in Hydrogen-Bonded [7]Helicenes. Organic Letters, 2000, 2, 3169-3172.	2.4	138
15	Photothermal Release of Single-Stranded DNA from the Surface of Gold Nanoparticles Through Controlled Denaturating and Auâ^'S Bond Breaking. ACS Nano, 2010, 4, 6395-6403.	7.3	132
16	Controlling Photoinduced Electron Transfer within a Hydrogen-Bonded Porphyrinâ^'Phenoxynaphthacenequinone Photochromic System. Journal of the American Chemical Society, 2001, 123, 177-178.	6.6	123
17	An Efficient Method Based on the Photothermal Effect for the Release of Molecules from Metal Nanoparticle Surfaces. Angewandte Chemie - International Edition, 2009, 48, 4166-4169.	7.2	121
18	Multipoint recognition of carboxylates by neutral hosts in non-polar solvents. Tetrahedron Letters, 1993, 34, 6837-6840.	0.7	118

#	Article	IF	CITATIONS
19	The Construction of (Salophen)ruthenium(II) Assemblies Using Axial Coordination. European Journal of Inorganic Chemistry, 2002, 2002, 357-368.	1.0	117
20	Selective and Sequential Photorelease Using Molecular Switches. Angewandte Chemie - International Edition, 2006, 45, 6820-6824.	7.2	117
21	Regulation of Human Carbonic Anhydrase I (hCAI) Activity by Using a Photochromic Inhibitor. Angewandte Chemie - International Edition, 2008, 47, 7644-7647.	7.2	114
22	Electrochemically induced ring-closing of photochromic 1,2-dithienylcyclopentenes. Chemical Communications, 2003, , 954-955.	2.2	106
23	Reductive Electrochemical Cyclization of a Photochromic 1,2-Dithienylcyclopentene Dication. Angewandte Chemie - International Edition, 2004, 43, 2812-2815.	7.2	104
24	Controlling a Polymer Adhesive Using Light and a Molecular Switch. Journal of the American Chemical Society, 2014, 136, 3024-3027.	6.6	103
25	A Multi-Addressable Photochromic 1,2-Dithienylcyclopentene-Phenoxynaphthacenequinone Hybrid. Advanced Materials, 2003, 15, 745-748.	11.1	96
26	Limited photochromism in covalently linked double 1,2-dithienylethenes. Advanced Materials for Optics and Electronics, 2000, 10, 245-249.	0.6	95
27	Successful Bifunctional Photoswitching and Electronic Communication of Two Platinum(II) Acetylide Bridged Dithienylethenes. Journal of the American Chemical Society, 2009, 131, 16644-16645.	6.6	95
28	Turning "On―and "Off―a Pyridoxal 5′â€Phosphate Mimic Using Light. Angewandte Chemie - Internat Edition, 2012, 51, 5431-5434.	tional 7.2	92
29	Reactivity-Gated Photochromism of 1,2-Dithienylethenes for Potential Use in Dosimetry Applications. Organic Letters, 2005, 7, 2969-2972.	2.4	91
30	Modulating the Lewis Acidity of Boron Using a Photoswitch. Angewandte Chemie - International Edition, 2008, 47, 5034-5037.	7.2	88
31	Reversible [7]-Thiahelicene Formation Using a 1,2-Dithienylcyclopentene Photochrome. Journal of the American Chemical Society, 2001, 123, 7447-7448.	6.6	78
32	Linker-Dependent Metal-Sensitized Photoswitching of Dithienylethenes. Inorganic Chemistry, 2009, 48, 19-21.	1.9	77
33	Highâ€Content Photochromic Polymers Based on Dithienylethenes. European Journal of Organic Chemistry, 2005, 2005, 1233-1238.	1.2	76
34	Axially coordinated porphyrins as new rotaxane stoppers. Chemical Communications, 2000, , 847-848.	2.2	75
35	Creating a Reactive Enediyne by Using Visible Light: Photocontrol of the Bergman Cyclization. Angewandte Chemie - International Edition, 2007, 46, 8017-8019.	7.2	75
36	Novel Photochromic Compounds Based on the 1-Thienyl-2-vinylcyclopentene Backbone. Organic Letters, 2003, 5, 1183-1186.	2.4	71

#	Article	IF	CITATIONS
37	Bidirectional Ring-Opening and Ring-Closing of Cationic 1,2-Dithienylcyclopentene Molecular Switches Triggered with Light or Electricity. Advanced Functional Materials, 2007, 17, 786-796.	7.8	67
38	Hollow Metal Nanorods with Tunable Dimensions, Porosity, and Photonic Properties. ACS Nano, 2009, 3, 1365-1372.	7.3	66
39	Photothermal release of singlet oxygen from gold nanoparticles. Chemical Communications, 2013, 49, 5639.	2.2	65
40	Photomodulation of Fluorescent Upconverting Nanoparticle Markers in Live Organisms by Using Molecular Switches. Chemistry - A European Journal, 2012, 18, 3122-3126.	1.7	64
41	Novel Photochromic Homopolymers Based on 1,2-Bis(3-thienyl)cyclopentenes. Macromolecules, 2003, 36, 298-303.	2.2	63
42	Supramolecular Chirality: Chiral hydrogen-bonded supermolecules from achiral molecular components. Helvetica Chimica Acta, 1998, 81, 1-13.	1.0	58
43	Reversible and Amplified Fluorescence Quenching of a Photochromic Polythiophene. Advanced Materials, 2008, 20, 1998-2002.	11.1	56
44	Photomodulation of Lewis basicity in a pyridine-functionalized 1,2-dithienylcyclopentene. Chemical Communications, 2005, , 2840.	2.2	55
45	A â€ ⁻ chemically-gated' photoresponsive compound as a visible detector for organophosphorus nerve agents. Chemical Communications, 2011, 47, 10954.	2.2	51
46	A "Plug-and-Play―Method to Prepare Water-Soluble Photoresponsive Encapsulated Upconverting Nanoparticles Containing Hydrophobic Molecular Switches. Chemistry of Materials, 2013, 25, 2495-2502.	3.2	51
47	Optical control of quantum dot luminescence via photoisomerization of a surface-coordinated, cationic dithienylethene. Photochemical and Photobiological Sciences, 2010, 9, 249.	1.6	50
48	Integrating molecular switching and chemical reactivity using photoresponsive hexatrienes. Pure and Applied Chemistry, 2006, 78, 2351-2359.	0.9	48
49	A Family of Multiaddressable, Multicolored Photoresponsive Copolymers Prepared by Ring-Opening Metathesis Polymerization. Chemistry of Materials, 2005, 17, 5473-5480.	3.2	45
50	Chiral and Extended Ï€â€Conjugated Bis(2â€pyridyl)phospholes as Assembling N,P,N Pincers for Coordinationâ€Driven Synthesis of Supramolecular [2,2]Paracyclophane Analogues. Chemistry - A European Journal, 2011, 17, 1337-1351.	1.7	43
51	Synthesis and Coordination Chemistry of a Photoswitchable Bis(phosphine) Ligand. Inorganic Chemistry, 2005, 44, 5960-5962.	1.9	42
52	Charge Transfer and Intraligand Excited State Interactions in Platinum-Sensitized Dithienylethenes. Inorganic Chemistry, 2011, 50, 4956-4966.	1.9	42
53	High-contrast fluorescence switching using a photoresponsive dithienylethene coordination compound. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 74-82.	2.0	41
54	Modulating chemical reactivity using a photoresponsive molecular switch. Tetrahedron, 2008, 64, 8292-8300.	1.0	41

#	Article	IF	CITATIONS
55	Using light and a molecular switch to †lock†and †unlock†the Diels†Alder reaction. Organic and Biomolecular Chemistry, 2012, 10, 2787.	1.5	40
56	The metal-directed self-assembly of three-dimensional porphyrin arrays. Chemical Communications, 2000, , 1211-1212.	2.2	38
57	Rigid, Cross-Conjugated Macrocycles:  A Cyclic Alternative to 4,4â€~-Bipyridines in Supramolecular Chemistry. Organic Letters, 2001, 3, 1045-1048.	2.4	36
58	Fluorescent Quenching of Lanthanide-Doped Upconverting Nanoparticles by Photoresponsive Polymer Shells. Chemistry of Materials, 2014, 26, 4313-4320.	3.2	34
59	Multifunctional photo- and thermo-responsive copolymer nanoparticles. Dyes and Pigments, 2011, 89, 230-235.	2.0	33
60	Novel Synthesis of Photochromic Polymers via ROMP. Organic Letters, 2000, 2, 2749-2751.	2.4	32
61	Visible‣ightâ€₹riggered Activation of a Protein Kinase Inhibitor. ChemMedChem, 2017, 12, 284-287.	1.6	31
62	Ultra-High-Density Photochromic Main-Chain 1,2-Dithienylcyclopentene Polymers Prepared Using Ring-Opening Metathesis Polymerization. Advanced Materials, 2004, 16, 123-125.	11.1	30
63	A UVâ€Blocking Polymer Shell Prevents Oneâ€Photon Photoreactions while Allowing Multiâ€Photon Processes in Encapsulated Upconverting Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 11106-11109.	7.2	29
64	A Photoresponsive Biomimetic Dry Adhesive Based on Doped PDMS Microstructures. Chemistry of Materials, 2014, 26, 4330-4333.	3.2	28
65	Mechanism of Calcium Oxalate Monohydrate Kidney Stones Formation: Layered Spherulitic Growth. Chemistry of Materials, 2010, 22, 1318-1329.	3.2	27
66	Photothermal release of small molecules from gold nanoparticles in live cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 908-915.	1.7	27
67	Two-colour fluorescent imaging in organisms using self-assembled nano-systems of upconverting nanoparticles and molecular switches. Nanoscale, 2015, 7, 11263-11266.	2.8	27
68	Protons as the Triggers to Regulate Hydrogen-Bonding Receptors. Organic Letters, 2002, 4, 881-884.	2.4	25
69	Structural Studies on Hydrogen-Bonding Receptors for Barbiturate Guests That Use Metal Ions as Allosteric Inhibitors. European Journal of Organic Chemistry, 2004, 2004, 173-182.	1.2	24
70	Two Colors of Light Are Needed to Break Bonds and Release Small Molecules from the Surface of SiO ₂ â€"Au Coreâ€"Shell Nanoparticles. Journal of the American Chemical Society, 2015, 137, 2824-2827.	6.6	24
71	Reporting the Release of Caged Species by a Combination of Two Sequential Photoreactions, a Molecular Switch, and One Color of Light. Angewandte Chemie - International Edition, 2012, 51, 2741-2744.	7.2	23
72	Using low-energy near infrared light and upconverting nanoparticles to trigger photoreactions within supramolecular assemblies. Chemical Communications, 2016, 52, 8636-8644.	2.2	23

#	Article	IF	CITATIONS
73	Multimodal fluorescence modulation using molecular photoswitches and upconverting nanoparticles. Organic and Biomolecular Chemistry, 2012, 10, 6159.	1.5	22
74	A Photoswitchable Donor-ï€-Linker-Acceptor System Based on a Modified Hexatriene Backbone. Advanced Materials, 2005, 17, 2134-2138.	11.1	20
75	Coordination complexes of \hat{l}^2 -thioether appended tetraazaporphyrin. Inorganic Chemistry Communication, 2001, 4, 219-222.	1.8	19
76	From slow to fast $\hat{a} \in ``the user controls the rate of the release of molecules from masked forms using a photoswitch and different types of light. Chemical Communications, 2015, 51, 7039-7042.$	2.2	19
77	Porphyrinic phenoxynaphthacenequinones. Tetrahedron Letters, 2000, 41, 3785-3788.	0.7	17
78	Strong and directed association of porphyrins and iron(terpyridine)s using hydrogen bonding and ion pairing. Tetrahedron, 2002, 58, 639-651.	1.0	16
79	Stereoelectronic effects in cyclization reactions. Journal of the American Chemical Society, 1990, 112, 3685-3686.	6.6	15
80	Supramolecular Metal-Polypyridyl and Ru(II) Porphyrin Complexes: Photophysical, Electron Paramagnetic Resonance, and Electrochemical Studies. Inorganic Chemistry, 2008, 47, 5425-5440.	1.9	15
81	Using light to control the inhibition of Karstedt's catalyst. Organic Chemistry Frontiers, 2019, 6, 1253-1256.	2.3	15
82	Replication and assembly. Pure and Applied Chemistry, 1993, 65, 2313-2318.	0.9	14
83	Direct Photolithographic Deposition of Colorâ€Coded Antiâ€Counterfeit Patterns with Titania Encapsulated Upconverting Nanoparticles. Advanced Optical Materials, 2020, 8, 2000664.	3.6	12
84	A remarkably stable hydrogen-bonded porphyrin·iron(terpyridine) ion pair. Chemical Communications, 2001, , 1794-1795.	2.2	11
85	Probing the Microenvironments in a Polymer-Wrapped Core–Shell Nanoassembly Using Pyrene Chromophores. ACS Omega, 2018, 3, 7673-7680.	1.6	9
86	Photochromic porphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 313-317.	0.4	8
87	Electrochemically induced dethreading of a 2-pseudorotaxane based on the 1,2-bis(4,4′-pyridinium)ethane/24-crown-8 ether motif. Tetrahedron Letters, 2005, 46, 6761-6763.	0.7	6
88	The Interaction of Urinary Components with Biomaterials in the Urinary Tract: Ureteral Stent Discoloration. Journal of Endourology, 2020, 34, 608-616.	1.1	6
89	A dual-mode visual detector for toxic hydrazine. RSC Advances, 2021, 11, 22835-22841.	1.7	5
90	Energy transfer between amphiphilic porphyrin polymer shells and upconverting nanoparticle cores in water-dispersible nano-assemblies. Organic and Biomolecular Chemistry, 2015, 13, 2317-2322.	1.5	4

#	Article	IF	CITATIONS
91	Unusual structural changes as a result of weathering benzofuran-based diarylethenes in simulated sunlight. Organic Chemistry Frontiers, 2019, 6, 1961-1966.	2.3	2
92	Photothermal release of an encapsulated therapeutic agent from polymer-wrapped gold nanoparticles. Nanoscale Advances, 2021, 3, 4669-4673.	2.2	2
93	Improved polyaromatic benzoin photoremovable protecting groups. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113530.	2.0	2
94	Selective Water Uptake in Calcium Oxalate Monohydrate Kidney Stones. Chemistry of Materials, 2009, 21, 5016-5021.	3.2	1
95	Photoresponsive Thiophene-Based Molecules and Materials. , 0, , 783-811.		1
96	Photochromic Materials in Biochemistry. , 0, , 361-391.		1
97	High-Content Photochromic Polymers Based on Dithienylethenes. ChemInform, 2005, 36, no.	0.1	O
98	A 'Plug and Play' Method to Create Water-dispersible Nanoassemblies Containing an Amphiphilic Polymer, Organic Dyes and Upconverting Nanoparticles. Journal of Visualized Experiments, 2015, , .	0.2	0