Vanessa A Fitsanakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8386229/publications.pdf

Version: 2024-02-01

304368 476904 1,677 32 22 29 citations h-index g-index papers 34 34 34 1859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Caenorhabditis elegans as a model to assess reproductive and developmental toxicity., 2022,, 253-264.		О
2	Caenorhabditis elegans: an elegant model organism for evaluating the neuroprotective and neurotherapeutic potential of nutraceuticals., 2021,, 411-430.		1
3	Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environmental Toxicology and Pharmacology, 2019, 66, 36-42.	2.0	36
4	Society of Toxicology Develops Learning Framework for Undergraduate Toxicology Courses Following the Vision and Change Core Concepts Model. Toxicological Sciences, 2019, 170, 20-24.	1.4	4
5	Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. Environmental Toxicology and Pharmacology, 2018, 57, 46-52.	2.0	71
6	Transport of a manganese/zinc ethylene-bis-dithiocarbamate fungicide may involve pre-synaptic dopaminergic transporters. Neurotoxicology and Teratology, 2018, 68, 66-71.	1.2	3
7	Caenorhabditis elegans as a Model to Assess Reproductive and Developmental Toxicity. , 2017, , 303-314.		4
8	Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology. Neurotoxicology and Teratology, 2016, 55, 23-31.	1.2	31
9	Acute exposure to a Mn/Zn ethylene-bis-dithiocarbamate fungicide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans. NeuroToxicology, 2016, 57, 112-120.	1.4	20
10	Caenorhabditis elegans chronically exposed to a Mn/Zn ethylene-bis-dithiocarbamate fungicide show mitochondrial Complex I inhibition and increased reactive oxygen species. NeuroToxicology, 2016, 56, 170-179.	1.4	26
11	Exposure to Glyphosate- and/or Mn/Zn-Ethylene-bis-Dithiocarbamate-Containing Pesticides Leads to Degeneration of \hat{I}^3 -Aminobutyric Acid and Dopamine Neurons in Caenorhabditis elegans. Neurotoxicity Research, 2012, 21, 281-290.	1.3	75
12	Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. NeuroToxicology, 2011, 32, 331-341.	1.4	70
13	Changes in Dietary Iron Exacerbate Regional Brain Manganese Accumulation as Determined by Magnetic Resonance Imaging. Toxicological Sciences, 2011, 120, 146-153.	1.4	93
14	Manganese (Mn) and Iron (Fe): Interdependency of Transport and Regulation. Neurotoxicity Research, 2010, 18, 124-131.	1.3	126
15	A model for the analysis of competitive relaxation effects of manganese and iron <i>in vivo</i> . NMR in Biomedicine, 2009, 22, 391-404.	1.6	30
16	A Chronic Iron-Deficient/High-Manganese Diet in Rodents Results in Increased Brain Oxidative Stress and Behavioral Deficits in the Morris Water Maze. Neurotoxicity Research, 2009, 15, 167-178.	1.3	33
17	Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. Journal of Neurochemistry, 2009, 110, 378-389.	2.1	108
18	Measuring Brain Manganese and Iron Accumulation in Rats following 14 Weeks of Low-Dose Manganese Treatment Using Atomic Absorption Spectroscopy and Magnetic Resonance Imaging. Toxicological Sciences, 2008, 103, 116-124.	1.4	70

#	Article	IF	CITATIONS
19	Differential deposition of manganese in the rat brain following subchronic exposure to manganese: a T1-weighted magnetic resonance imaging study. Israel Medical Association Journal, 2008, 10, 793-8.	0.1	25
20	Putative proteins involved in manganese transport across the blood-brain barr 1ier. Human and Experimental Toxicology, 2007, 26, 295-302.	1.1	35
21	Blood-Brain Barrier and Cell-Cell Interactions: Methods for Establishing In Vitro Models of the Blood-Brain Barrier and Transport Measurements. , 2006, 341, 1-16.		19
22	The effects of manganese on glutamate, dopamine and \hat{I}^3 -aminobutyric acid regulation. Neurochemistry International, 2006, 48, 426-433.	1.9	137
23	Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood–brain barrier. NeuroToxicology, 2006, 27, 60-70.	1.4	19
24	The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. NeuroToxicology, 2006, 27, 798-806.	1.4	68
25	Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. NeuroToxicology, 2006, 27, 788-797.	1.4	45
26	Brain Accumulation of Depleted Uranium in Rats Following 3- or 6-Month Treatment With Implanted Depleted Uranium Pellets. Biological Trace Element Research, 2006, 111, 185-198.	1.9	22
27	Alterations of Oxidative Stress Biomarkers Due to In Utero and Neonatal Exposures of Airborne Manganese. Biological Trace Element Research, 2006, 111, 199-216.	1.9	48
28	The In Vitro Uptake of Glutamate in GLAST and GLT-1 Transfected Mutant CHO-K1 Cells Is Inhibited by Manganese. Biological Trace Element Research, 2005, 107, 221-230.	1.9	35
29	The importance of glutamate, glycine, and \hat{I}^3 -aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity. Toxicology and Applied Pharmacology, 2005, 204, 343-354.	1.3	106
30	Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media. Journal of Neuroscience Research, 2005, 81, 235-243.	1.3	18
31	Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. Journal of Neurochemistry, 2003, 84, 336-346.	2.1	201
32	Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides. Free Radical Biology and Medicine, 2002, 33, 1714-1723.	1.3	87