Jiangtao Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8385862/publications.pdf Version: 2024-02-01

LIANCTAO SUN

#	Article	IF	CITATIONS
1	Rhodium-catalyzed dearomative rearrangement of 2-oxypyridines with cyclopropenes: access to <i>N</i> -alkylated 2-pyridones. Organic Chemistry Frontiers, 2022, 9, 1295-1299.	2.3	13
2	Catalytic Transformations of 2-Pyridones by Rhodium-Mediated Carbene Transfer. Organic Letters, 2022, 24, 1637-1641.	2.4	9
3	Asymmetric Arylation of Diazoesters with Anisoles Enabled by Cooperative Gold and Phosphoric Acid Catalysis. Organic Letters, 2022, 24, 2809-2814.	2.4	14
4	Atroposelective Synthesis of Axially Chiral C2-Arylindoles via Rhodium-Catalyzed Asymmetric C–H Bond Insertion. Organic Letters, 2022, 24, 4670-4674.	2.4	17
5	Enyne diketones as substrate in asymmetric Nazarov cyclization for construction of chiral allene cyclopentenones. Nature Communications, 2022, 13, .	5.8	6
6	Scandium-catalyzed highly selective N2-alkylation of benzotriazoles with cyclohexanones. Organic Chemistry Frontiers, 2021, 8, 278-282.	2.3	6
7	Iridium-catalyzed regio- and enantioselective allylic esterification of secondary allylic alcohols with carboxylic acids. Chemical Communications, 2021, 57, 11080-11083.	2.2	9
8	Ruthenium-Catalyzed Chemoselective N–H Bond Insertion Reactions of 2-Pyridones/7-Azaindoles with Sulfoxonium Ylides. Organic Letters, 2021, 23, 1038-1043.	2.4	34
9	Copper-Catalyzed 1,1-Boroalkylation of Terminal Alkynes: Access to Alkenylboronates via a Three-Component Reaction. Organic Letters, 2021, 23, 3706-3711.	2.4	13
10	Chemo―and Enantioselective Insertion of Furyl Carbene into the Nâ^'H Bond of 2â€Pyridones. Angewandte Chemie, 2021, 133, 17079-17083.	1.6	3
11	Chemo―and Enantioselective Insertion of Furyl Carbene into the Nâ^'H Bond of 2â€Pyridones. Angewandte Chemie - International Edition, 2021, 60, 16942-16946.	7.2	32
12	Copper-Catalyzed Tandem Cross-Coupling and Alkynylogous Aldol Reaction: Access to Chiral Exocyclic α-Allenols. Organic Letters, 2021, 23, 5175-5179.	2.4	8
13	Asymmetric [3 + 1]-Cycloaddition Reaction via Diazo Discrimination. Organic Letters, 2021, 23, 7613-7617.	2.4	7
14	Construction of Câ^'C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 25714-25718.	7.2	23
15	Gold-Catalyzed Cascade Cyclization and 1,3-Difunctionalization To Access Polysubstituted Furans. Organic Letters, 2021, 23, 853-857.	2.4	21
16	[4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones. Organic Letters, 2021, 23, 8921-8925.	2.4	15
17	Gold-Catalyzed Intermolecular Formal [4 + 2 + 2]-Cycloaddition of Anthranils with Allenamides. Organic Letters, 2020, 22, 5990-5994.	2.4	20
18	Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of <i>N</i> -Aromatic Zwitterions. Organic Letters, 2020, 22, 9376-9380.	2.4	5

#	Article	IF	CITATIONS
19	Dearomative Migratory Rearrangement of 2-Oxypyridines Enabled by α-Imino Rhodium Carbene. Organic Letters, 2020, 22, 9303-9307.	2.4	27
20	Forming All arbon Quaternary Stereocenters by Organocatalytic Aminomethylation: Concise Access to β 2,2 â€Amino Acids. Angewandte Chemie, 2020, 132, 23722-23726.	1.6	2
21	Forming Allâ€Carbon Quaternary Stereocenters by Organocatalytic Aminomethylation: Concise Access to β ^{2,2} â€Amino Acids. Angewandte Chemie - International Edition, 2020, 59, 23516-23520.	7.2	26
22	Innentitelbild: Access to N-Substituted 2-Pyridones by Catalytic Intermolecular Dearomatization and 1,4-Acyl Transfer (Angew. Chem. 7/2019). Angewandte Chemie, 2019, 131, 1866-1866.	1.6	0
23	B(C ₆ F ₅) ₃ -Catalyzed formal (4+1)-annulation of <i>ortho</i> -quinone methides with diazoacetates: access to 2,3-dihydrobenzofurans. Chemical Communications, 2019, 55, 9096-9099.	2.2	23
24	Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Organic Letters, 2019, 21, 8488-8491.	2.4	34
25	Gold-Catalyzed Highly Diastereoselective Oxy-Propargylamination of Allenamides with <i>C</i> -Alkynyl <i>N</i> -Boc <i>N</i> , <i>O</i> -Acetals. Organic Letters, 2019, 21, 9050-9054.	2.4	22
26	Copper-Catalyzed Amino-oxymethylation of Ynamides with <i>N</i> , <i>O</i> -Acetals. Organic Letters, 2019, 21, 9076-9079.	2.4	18
27	Ir-Catalyzed Regiocontrolled Allylic Amination of Di-/Trienyl Allylic Alcohols with Secondary Amines. Organic Letters, 2019, 21, 7228-7232.	2.4	25
28	Rhodium-Catalyzed Câ•N Bond Formation through a Rebound Hydrolysis Mechanism and Application in β-Lactam Synthesis. Organic Letters, 2019, 21, 4124-4127.	2.4	27
29	Stereoselective Synthesis of Fully Substituted β-Lactams via Metal–Organo Relay Catalysis. Organic Letters, 2019, 21, 3804-3807.	2.4	25
30	Copper-Catalyzed Oxy-aminomethylation of Diazo Compounds with <i>N</i> , <i>O</i> -Acetals. Organic Letters, 2019, 21, 1664-1667.	2.4	24
31	Access to N‧ubstituted 2â€Pyridones by Catalytic Intermolecular Dearomatization and 1,4â€Acyl Transfer. Angewandte Chemie, 2019, 131, 2002-2006.	1.6	12
32	Access to Nâ€Substituted 2â€Pyridones by Catalytic Intermolecular Dearomatization and 1,4â€Acyl Transfer. Angewandte Chemie - International Edition, 2019, 58, 1980-1984.	7.2	58
33	[3 + 2]-Cycloaddition of Azaoxyallyl Cations with Hexahydro-1,3,5-triazines: Access to 4-Imidazolidinones. Organic Letters, 2018, 20, 2745-2748.	2.4	69
34	Catalyst-free synthesis of tetrahydropyrimidines <i>via</i> formal [3+3]-cycloaddition of imines with 1,3,5-hexahydro-1,3,5-triazines. RSC Advances, 2018, 8, 5532-5535.	1.7	23
35	Gold-Catalyzed Controllable C2-Functionalization of Benzofurans with Aryl Diazoesters. Organic Letters, 2018, 20, 72-75.	2.4	35
36	Gold-catalyzed C5-alkylation of indolines and sequential oxidative aromatization: access to C5-functionalized indoles. Organic and Biomolecular Chemistry, 2018, 16, 3889-3892.	1.5	27

#	Article	IF	CITATIONS
37	Lewis Acid-Mediated Room-Temperature Cascade Reaction of 3-Hydroxyisoindolin-1-one with Alkynes. Journal of Organic Chemistry, 2018, 83, 4257-4263.	1.7	10
38	Gold-catalyzed stereoselective dearomatization/metal-free aerobic oxidation: access to 3-substituted indolines/oxindoles. Chemical Science, 2018, 9, 634-639.	3.7	49
39	Tandem Reaction of Allenoate Formation and Cyclization: Divergent Synthesis of Four- to Six-Membered Heterocycles. Organic Letters, 2018, 20, 7708-7711.	2.4	19
40	Rhodium-Catalyzed Asymmetric Dearomative [4 + 3]-Cycloaddition of Vinylindoles with Vinyldiazoacetates: Access to Cyclohepta[<i>b</i>]indoles. Organic Letters, 2018, 20, 3408-3412.	2.4	33
41	Rhodiumâ€Catalyzed Regioselective <i>N</i> ² â€Alkylation of Benzotriazoles with Diazo Compounds/Enynones via a Nonclassical Pathway. Angewandte Chemie, 2018, 130, 12669-12673.	1.6	12
42	Rhodiumâ€Catalyzed Regioselective <i>N</i> ² â€Alkylation of Benzotriazoles with Diazo Compounds/Enynones via a Nonclassical Pathway. Angewandte Chemie - International Edition, 2018, 57, 12489-12493.	7.2	73
43	Asymmetric [4 + 2]-Cycloaddition of Copper–Allenylidenes with Hexahydro-1,3,5-triazines: Access to Chiral Tetrahydroquinazolines. Organic Letters, 2018, 20, 3710-3713.	2.4	71
44	Gold-Catalyzed Regiodivergent [2 + 2 + 2]-Cycloadditions of Allenes with Triazines. Organic Letters, 2017, 19, 524-527.	2.4	71
45	Gold-catalyzed highly regio- and enantioselective vinylcarbene insertion into O–H bonds of 2-pyridones. Chemical Communications, 2017, 53, 3197-3200.	2.2	35
46	Gold/silver-catalyzed controllable regioselective vinylcarbene insertion into O–H bonds. Organic and Biomolecular Chemistry, 2017, 15, 2345-2348.	1.5	29
47	Gd(III)-induced Supramolecular Hydrogelation with Enhanced Magnetic Resonance Performance for Enzyme Detection. Scientific Reports, 2017, 7, 40172.	1.6	17
48	Synthesis of Six-Membered Carbo-/Heterocycles via Cascade Reaction of Alkynes and Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 5492-5498.	1.7	21
49	Synthesis of seven-membered heterocycles via copper-catalyzed cross-coupling of terminal alkynes with diazo compounds and sequential Michael addition. Organic and Biomolecular Chemistry, 2017, 15, 5272-5274.	1.5	11
50	Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds. Organic Letters, 2017, 19, 3482-3485.	2.4	47
51	A controlled selective synthesis of dihydropyrans through tandem reaction of alkynes with diazo compounds. Chemical Communications, 2017, 53, 4350-4353.	2.2	24
52	Metal-Free [2 + 1 + 2]-Cycloaddition of Tosylhydrazones with Hexahydro-1,3,5-triazines To Form Imidazolidines. Organic Letters, 2017, 19, 1858-1861.	2.4	49
53	Gold-catalyzed sequential annulations towards 3,4-fused bi/tri-cyclic furans involving a [3+2+2]-cycloaddition. Chemical Communications, 2017, 53, 1152-1155.	2.2	77
54	Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines. Organic and Biomolecular Chemistry, 2017, 15, 7743-7746.	1.5	22

#	Article	IF	CITATIONS
55	Divergent Synthesis of Fused Tricyclic Compounds via a Tandem Reaction from Alkynyl-cyclohexadienones and Diazoesters. Organic Letters, 2017, 19, 6440-6443.	2.4	25
56	Gold-catalyzed [2+2+2+2]-annulation of 1,3,5-hexahydro-1,3,5-triazines with alkoxyallenes. Chemical Communications, 2017, 53, 12770-12773.	2.2	34
57	Goldâ€Catalyzed Formal [4+1]/[4+3] Cycloadditions of Diazo Esters with Triazines. Angewandte Chemie, 2016, 128, 12046-12050.	1.6	39
58	Gold atalyzed Formal [4+1]/[4+3] Cycloadditions of Diazo Esters with Triazines. Angewandte Chemie - International Edition, 2016, 55, 11867-11871.	7.2	146
59	Baseâ€Promoted/Gold atalyzed Intramolecular Highly Selective and Controllable Detosylative Cyclization. Chemistry - A European Journal, 2015, 21, 12871-12875.	1.7	36
60	Stereodivergent Synthesis of Nâ€Heterocycles by Catalystâ€Controlled, Activityâ€Directed Tandem Annulation of Diazo Compounds with Amino Alkynes. Angewandte Chemie - International Edition, 2015, 54, 12962-12967.	7.2	109
61	Copper-catalyzed 1,3-dipolar cycloaddition of methyleneindolinones and N,N′-cyclic azomethine imines. Chinese Chemical Letters, 2015, 26, 301-303.	4.8	13
62	An efficient synthesis of isoquinolines via rhodium-catalyzed direct C–H functionalization of arylhydrazines. Organic and Biomolecular Chemistry, 2015, 13, 7920-7923.	1.5	37
63	Gold-catalyzed intramolecular diazo coupling: an efficient macrocyclization towards cyclic olefins. Chemical Communications, 2015, 51, 12768-12770.	2.2	28
64	Realized C–H Functionalization of Aryldiazo Compounds via Rhodium Relay Catalysis. Organic Letters, 2015, 17, 1810-1813.	2.4	60
65	Synthesis of Polyheteroaromatic Compounds via Rhodium-Catalyzed Multiple C–H Bond Activation and Oxidative Annulation. Organic Letters, 2015, 17, 5032-5035.	2.4	59
66	Copper-Catalyzed Diazo Cross-/Homo-Coupling toward Tetrasubstituted Olefins and Applications on the Synthesis of Maleimide Derivatives. Organic Letters, 2015, 17, 4244-4247.	2.4	61
67	Gold(I) atalyzed Diazo Cross oupling: A Selective and Ligand ontrolled Denitrogenation/Cyclization Cascade. Angewandte Chemie - International Edition, 2015, 54, 883-887.	7.2	108
68	Copper atalyzed NH Insertion and Oxidative Aromatization Cascade: Facile Synthesis of 2â€Arylaminophenols. Chemistry - an Asian Journal, 2014, 9, 1539-1542.	1.7	26
69	A highly efficient DBU-catalyzed green synthesis of spiro-oxindoles. RSC Advances, 2014, 4, 44193-44196.	1.7	8
70	Palladium catalyzed N–H bond insertion and intramolecular cyclization cascade: the divergent synthesis of heterocyclics. Organic and Biomolecular Chemistry, 2014, 12, 2533-2537.	1.5	17
71	Metal-free, visible-light photoredox catalysis: transformation of arylmethyl bromides to alcohols and aldehydes. RSC Advances, 2014, 4, 49974-49978.	1.7	18
72	Mild gold-catalyzed three-component dehydrogenative coupling of terminal alkynes to amines and indole-2-carboxaldehyde. Organic and Biomolecular Chemistry, 2014, 12, 2523-2527.	1.5	35

#	Article	IF	CITATIONS
73	Gold(I) atalyzed Diazo Coupling: Strategy towards Alkene Formation and Tandem Benzannulation. Angewandte Chemie - International Edition, 2014, 53, 11070-11074.	7.2	136
74	A supramolecular hydrogel for the delivery of bortezomib. RSC Advances, 2014, 4, 50145-50147.	1.7	10
75	Copper-catalyzed annulation of α-substituted diazoacetates with 2-ethynylanilines: the direct synthesis of C2-functionalized indoles. Organic and Biomolecular Chemistry, 2014, 12, 1387-1390.	1.5	31
76	A Pd-catalyzed cascade reaction of N–H insertion and oxidative dehydrogenative aromatization: a new entry to 2-amino-phenols. Organic and Biomolecular Chemistry, 2014, 12, 4084-4088.	1.5	8
77	When Aryldiazonium Salts Meet Vinyl Diazoacetates: A Cobalt-Catalyzed Regiospecific Synthesis of N-Arylpyrazoles. Organic Letters, 2014, 16, 3110-3113.	2.4	35
78	Photoâ€Assisted Multiâ€Component Reactions (MCR): A New Entry to 2â€Pyrimidinethiones. Advanced Synthesis and Catalysis, 2014, 356, 2801-2806.	2.1	21
79	Palladium-catalyzed carbenoid based N–H bond insertions: application to the synthesis of chiral α-amino esters. Organic and Biomolecular Chemistry, 2013, 11, 5998.	1.5	40
80	A highly enantioselective Darzens reaction between diazoacetamides and aldehydes catalyzed by a (+)-pinanediol–Ti(OiPr)4 system. Organic and Biomolecular Chemistry, 2013, 11, 900.	1.5	23
81	Gold(III)-Catalyzed Three-Component Coupling Reaction (TCC) Selective toward Furans. Organic Letters, 2013, 15, 2884-2887.	2.4	66
82	Cul-catalyzed cross-coupling of diazoacetamide with terminal alkynes: an approach to synthesizing substituted dienamides and 3-butynamides. RSC Advances, 2013, 3, 21260.	1.7	22
83	Molecular hydrogelators consist of Taxol and short peptides/amino acids. Journal of Materials Chemistry, 2012, 22, 16933.	6.7	30
84	Synthesis of Novel 1,4â€Bissulfonamide Ligands for Enantioselective Addition of Diethylzinc to Aldehydes. Chinese Journal of Chemistry, 2011, 29, 1697-1702.	2.6	2
85	Catalytic Enantioselective Ring-Opening Reaction of meso-Epoxides with ArSeH Using a (Salen)Ti(IV) Complex. Letters in Organic Chemistry, 2010, 7, 561-565.	0.2	2
86	Positron emission tomography imaging of prostate cancer. Amino Acids, 2010, 39, 11-27.	1.2	60
87	Multimodality imaging of nitric oxide and nitric oxide synthases. Free Radical Biology and Medicine, 2009, 47, 684-698.	1.3	51
88	Unusual Deactivation in the Asymmetric Hydrogenation of Itaconic Acid. Advanced Synthesis and Catalysis, 2009, 351, 750-754.	2.1	15
89	Catalytic Asymmetric Ringâ€Opening Reaction of <i>meso</i> â€Epoxides with Aryl Selenols and Thiols Catalyzed by a Heterobimetallic Galliumâ€īitaniumâ€5alen Complex. Advanced Synthesis and Catalysis, 2009, 351, 920-930.	2.1	49
90	Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today, 2009, 4, 399-413.	6.2	234

#	Article	IF	CITATIONS
91	Enantioselective ring-opening reaction of meso-epoxides with ArSH catalyzed by heterobimetallic Ti–Ga–Salen system. Tetrahedron Letters, 2009, 50, 548-551.	0.7	52
92	Enantioselective pinacol coupling reaction of aromatic aldehydes catalyzed by chiral vanadium complexes. Journal of Organometallic Chemistry, 2009, 694, 3219-3221.	0.8	26
93	Salan-Vanadium Catalyzed Enantioselective Desymmetrization of meso-Epoxides with Aromatic Thiols. Letters in Organic Chemistry, 2009, 6, 329-331.	0.2	1
94	Synthesis of new Schiff base-camphorsulfonyl amide ligands and in situ screening in the asymmetric additions of organozinc reagents to aldehydes. Tetrahedron: Asymmetry, 2008, 19, 2451-2457.	1.8	16
95	Trinuclear Rhodium Complexes and Their Relevance for Asymmetric Hydrogenation. Chemistry - an Asian Journal, 2008, 3, 1979-1982.	1.7	24
96	Synthesis of Optically Active 2,5-Dialkylcyclohexane-1,4-diols and Their Application in the Asymmetric Oxidation of Sulfides. Synthesis, 2008, 2008, 2513-2518.	1.2	7
97	Vanadium-Salan Catalyzed Enantioselective Ring Opening of meso-Epoxides with Aromatic Amines. Synthesis, 2008, 2008, 2100-2104.	1.2	21
98	Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications, 2008, Volume 1, 17-32.	4.6	652
99	Efficient Asymmetric Oxidation of Sulfides and Kinetic Resolution of Sulfoxides Catalyzed by a Vanadium?Salan System ChemInform, 2005, 36, no.	0.1	0
100	The Synthesis of New C2-Symmetric Chiral 1,4-Diamino Motif and Application in Catalytic Asymmetric Alkynylation of meso-Epoxides. Synlett, 2004, 2004, 465-468.	1.0	15
101	Efficient Asymmetric Oxidation of Sulfides and Kinetic Resolution of Sulfoxides Catalyzed by a Vanadiumâ [~] 'Salan System. Journal of Organic Chemistry, 2004, 69, 8500-8503.	1.7	154
102	Synthesis and asymmetric catalytic activities of chiral organogallium and indium complexes with ephedrine derivatives as ligands. The crystal structure of [(1R,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 297 Td (2S)	∣-(Molee2Ca-Î	¹ ∕4 1 9CH(C6⊦
103	Construction of Câ€C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ€H Bonds. Angewandte Chemie, 0, , .	1.6	3

¹⁰⁴ Diastereoselective Formation of \hat{l}^2 -Lactams via a Three-Component Reaction. New Journal of Chemistry, 0, , . 1.4 2