Zu-Jin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8385332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chemical Society Reviews, 2014, 43, 5867-5895.	38.1	739
2	MOF-808: A Metal–Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. Inorganic Chemistry, 2018, 57, 9096-9104.	4.0	258
3	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
4	Efficient Capture and Effective Sensing of Cr ₂ O ₇ ^{2–} from Water Using a Zirconium Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 14178-14188.	4.0	189
5	Palladium Nanoparticles Encapsulated in a Metal–Organic Framework as Efficient Heterogeneous Catalysts for Direct C2 Arylation of Indoles. Chemistry - A European Journal, 2011, 17, 12706-12712.	3.3	177
6	Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 2011, 14, 27-31.	3.3	162
7	Water-Stable Anionic Metal–Organic Framework for Highly Selective Separation of Methane from Natural Gas and Pyrolysis Gas. ACS Applied Materials & Interfaces, 2016, 8, 9777-9781.	8.0	148
8	An Anion Metal–Organic Framework with Lewis Basic Sites-Rich toward Charge-Exclusive Cationic Dyes Separation and Size-Selective Catalytic Reaction. Inorganic Chemistry, 2016, 55, 2641-2649.	4.0	139
9	Zr-Based Metal–Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H ₂ O ₂ Decomposition. Inorganic Chemistry, 2019, 58, 6983-6992.	4.0	137
10	Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides. Journal of Catalysis, 2012, 292, 111-117.	6.2	128
11	Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal–organic frameworks for catalytic oxidative desulfurization. Dalton Transactions, 2014, 43, 11950-11958.	3.3	124
12	Microwave-Assisted Synthesis of a Series of Lanthanide Metal–Organic Frameworks and Gas Sorption Properties. Inorganic Chemistry, 2012, 51, 1813-1820.	4.0	106
13	Homochiral Nickel Coordination Polymers Based on Salen(Ni) Metalloligands: Synthesis, Structure, and Catalytic Alkene Epoxidation. Inorganic Chemistry, 2011, 50, 2191-2198.	4.0	103
14	Porous Anionic Indium–Organic Framework with Enhanced Gas and Vapor Adsorption and Separation Ability. ChemSusChem, 2014, 7, 2647-2653.	6.8	101
15	Encapsulation of Phosphotungstic Acid into Metal–Organic Frameworks with Tunable Window Sizes: Screening of PTA@MOF Catalysts for Efficient Oxidative Desulfurization. Inorganic Chemistry, 2018, 57, 13009-13019.	4.0	100
16	Dual-Emissive Metal–Organic Framework as a Fluorescent "Switch―for Ratiometric Sensing of Hypochlorite and Ascorbic Acid. Inorganic Chemistry, 2019, 58, 13360-13369.	4.0	94
17	Porous Anionic, Cationic, and Neutral Metal-Carboxylate Frameworks Constructed from Flexible Tetrapodal Ligands: Syntheses, Structures, Ion-Exchanges, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 2264-2271.	4.0	90
18	A Series of Lanthanide Metal–Organic Frameworks Based on Biphenylâ€3,4′,5â€ŧricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2010, 2010, 3842-3849.	2.0	89

Zu-Jin Lin

#	Article	IF	CITATIONS
19	Construction of a Polyhedral Metal–Organic Framework via a Flexible Octacarboxylate Ligand for Gas Adsorption and Separation. Inorganic Chemistry, 2013, 52, 3127-3132.	4.0	85
20	Direct CH Bond Arylation of Indoles with Aryl Boronic Acids Catalyzed by Palladium Nanoparticles Encapsulated in Mesoporous Metal–Organic Framework. ChemCatChem, 2013, 5, 1877-1883.	3.7	85
21	Effective and selective adsorption of organoarsenic acids from water over a Zr-based metal-organic framework. Chemical Engineering Journal, 2019, 378, 122196.	12.7	79
22	A Guestâ€Ðependent Approach to Retain Permanent Pores in Flexible Metal–Organic Frameworks by Cation Exchange. Chemistry - A European Journal, 2012, 18, 7896-7902.	3.3	66
23	Structure Versatility of Coordination Polymers Constructed from a Semirigid Tetracarboxylate Ligand: Syntheses, Structures, and Photoluminescent Properties. Crystal Growth and Design, 2013, 13, 255-263.	3.0	65
24	From 2D → 3D inclined polycatenation to 2D → 3D parallel polycatenation: a central metal cationic induce strategy. CrystEngComm, 2011, 13, 440-443.	2.6	58
25	Water-medium C–H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. Journal of Catalysis, 2016, 333, 1-7.	6.2	58
26	<i>In Situ</i> Growth of Metal–Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties. Langmuir, 2013, 29, 8657-8664.	3.5	53
27	Pore-size tuning in double-pillared metal–organic frameworks containing cadmium clusters. CrystEngComm, 2011, 13, 3321.	2.6	49
28	Two Novel 3d-4f Heterometallic Frameworks Assembled from a Flexible Bifunctional Macrocyclic Ligand. Crystal Growth and Design, 2012, 12, 4708-4711.	3.0	46
29	Designed 4,8-Connected Metal–Organic Frameworks Based on Tetrapodal Octacarboxylate Ligands. Crystal Growth and Design, 2011, 11, 4284-4287.	3.0	43
30	Three New Three-Dimensional Frameworks Based on Hepta-, Hexa-, and Pentanuclear Cobalt Clusters Derived from Substituted Isophthalic Acids: Synthesis, Structures, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 3746-3753.	3.0	41
31	Patterned growth of luminescent metal–organic framework films: a versatile electrochemically-assisted microwave deposition method. Chemical Communications, 2016, 52, 3951-3954.	4.1	40
32	Robust Mesoporous Functional Hydrogen-Bonded Organic Framework for Hypochlorite Detection. ACS Applied Materials & Interfaces, 2022, 14, 21098-21105.	8.0	34
33	Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. CrystEngComm, 2015, 17, 1381-1388.	2.6	31
34	Boosting the photoreduction activity of Cr(<scp>vi</scp>) in metal–organic frameworks by photosensitiser incorporation and framework ionization. Journal of Materials Chemistry A, 2020, 8, 17219-17228.	10.3	31
35	A Metallosalenâ€based Porous Organic Polymer for Olefin Epoxidation. ChemCatChem, 2015, 7, 2340-2345	3.7	26
36	Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. Journal of Catalysis, 2017, 355, 131-138.	6.2	26

Zu-Jin Lin

#	Article	IF	CITATIONS
37	Dual-emissive metal–organic framework: a novel turn-on and ratiometric fluorescent sensor for highly efficient and specific detection of hypochlorite. Dalton Transactions, 2020, 49, 9680-9687.	3.3	25
38	Syntheses, structures and photoluminescent properties of lanthanide coordination polymers based on pyridyl functionalized imidazole dicarboxylic acid. RSC Advances, 2013, 3, 9279.	3.6	24
39	Two enantiomorphic 3D Zn(ii)–carboxylate MOFs with double helical structures serving as a chiral source induced by hydrogen bonding. CrystEngComm, 2012, 14, 4165.	2.6	23
40	Porous Hydrogen-bonded Organic Frameworks (HOFs): Status and Challenges. Acta Chimica Sinica, 2020, 78, 1309.	1.4	21
41	Cobalt-cluster-based coordination polymers with size-matching mixed ligands. CrystEngComm, 2014, 16, 1749.	2.6	18
42	Entangled coordination polymers with mixed N- and O-donor organic linkers: A case of module-matching priority. Dalton Transactions, 2012, 41, 4146.	3.3	16
43	Enantioselective Inclusion of Alcohols by Solvent-Controlled Assembled Flexible Metal–Organic Frameworks. Inorganic Chemistry, 2014, 53, 4794-4796.	4.0	16
44	Synthesis, structures and luminescent properties of lanthanide coordination polymers involving biphenyl-3,4′,5-tricarboxylate. CrystEngComm, 2014, 16, 6425-6432.	2.6	12
45	Preparation of fluorescent organic nanoparticles <i>via</i> self-polymerization for tartrazine detection in food samples. New Journal of Chemistry, 2022, 46, 4756-4761.	2.8	7
46	Coordination polymers constructed from a tripodal phosphoryl carboxylate ligand: synthesis, structures and physical properties. CrystEngComm, 2015, 17, 4547-4553.	2.6	6