Gabriel L Galea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8385249/publications.pdf

Version: 2024-02-01

CARDIEL L CALEA

#	Article	IF	CITATIONS
1	Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics. Methods in Molecular Biology, 2022, 2438, 217-230.	0.4	2
2	Cannabidiol impairs neural tube closure in mouse whole embryo culture. Birth Defects Research, 2022, , .	0.8	3
3	Making and shaping endochondral and intramembranous bones. Developmental Dynamics, 2021, 250, 414-449.	0.8	79
4	Glycine Cleavage System H Protein Is Essential for Embryonic Viability, Implying Additional Function Beyond the Glycine Cleavage System. Frontiers in Genetics, 2021, 12, 625120.	1.1	12
5	Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nature Communications, 2021, 12, 1159.	5.8	24
6	Hindbrain neuropore tissue geometry determines asymmetric cell-mediated closure dynamics in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
7	Mapping Regional Cortical Bone Responses to Local Changes in Loading and Systemic Stimuli. Methods in Molecular Biology, 2021, 2221, 275-289.	0.4	1
8	Vangl2-environment interaction causes severe neural tube defects, without abnormal neuroepithelial convergent extension. DMM Disease Models and Mechanisms, 2021, , .	1.2	5
9	Refinement of inducible gene deletion in embryos of pregnant mice. Birth Defects Research, 2020, 112, 196-204.	0.8	14
10	Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene: X, 2020, 763, 100027.	2.3	16
11	Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice. Bone, 2020, 133, 115255.	1.4	6
12	Integrin-Mediated Focal Anchorage Drives Epithelial Zippering during Mouse Neural Tube Closure. Developmental Cell, 2020, 52, 321-334.e6.	3.1	46
13	Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nature Communications, 2019, 10, 2487.	5.8	44
14	Rho kinase-dependent apical constriction counteracts M-phase apical expansion to enable mouse neural tube closure. Journal of Cell Science, 2019, 132, .	1.2	19
15	Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	20
16	Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice. Scientific Reports, 2018, 8, 3325.	1.6	5
17	Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	42
18	Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos. Mechanisms of Development, 2018, 149, 20-26.	1.7	22

GABRIEL L GALEA

#	Article	IF	CITATIONS
19	Overexpression of Grainyhead-like 3 causes spina bifida and interacts genetically with mutant alleles of Grhl2 and Vangl2 in mice. Human Molecular Genetics, 2018, 27, 4218-4230.	1.4	21
20	Parathyroid hormone's enhancement of bones' osteogenic response to loading is affected by ageing in a dose- and time-dependent manner. Bone, 2017, 98, 59-67.	1.4	25
21	Neural tube closure: cellular, molecular and biomechanical mechanisms. Development (Cambridge), 2017, 144, 552-566.	1.2	402
22	Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle. Gene, 2017, 599, 36-52.	1.0	42
23	Biomechanical coupling facilitates spinal neural tube closure in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5177-E5186.	3.3	92
24	Sclerostin's role in bone's adaptive response to mechanical loading. Bone, 2017, 96, 38-44.	1.4	107
25	Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading. Frontiers in Endocrinology, 2015, 6, 52.	1.5	33
26	Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice. Bone, 2015, 81, 47-52.	1.4	17
27	Planar Cell Polarity Aligns Osteoblast Division in Response to Substrate Strain. Journal of Bone and Mineral Research, 2015, 30, 423-435.	3.1	23
28	Four-Point Bending Protocols to Study the Effects of Dynamic Strain in Osteoblastic Cells In Vitro. Methods in Molecular Biology, 2015, 1226, 117-130.	0.4	8
29	Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone. PLoS ONE, 2015, 10, e0140260.	1.1	36
30	Protein Kinase Cα (PKCα) Regulates Bone Architecture and Osteoblast Activity. Journal of Biological Chemistry, 2014, 289, 25509-25522.	1.6	27
31	Age-Related Impairment of Bones' Adaptive Response to Loading in Mice Is Associated With Sex-Related Deficiencies in Osteoblasts but No Change in Osteocytes. Journal of Bone and Mineral Research, 2014, 29, 1859-1871.	3.1	87
32	Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. Journal of Bone and Mineral Research, 2013, 28, 291-301.	3.1	87
33	Male mice housed in groups engage in frequent fighting and show a lower response to additional bone loading than females or individually housed males that do not fight. Bone, 2013, 54, 113-117.	1.4	61
34	Estrogen receptors' roles in the control of mechanically adaptive bone (re)modeling. BoneKEy Reports, 2013, 2, 413.	2.7	35
35	Estrogen Receptor α Mediates Proliferation of Osteoblastic Cells Stimulated by Estrogen and Mechanical Strain, but Their Acute Down-regulation of the Wnt Antagonist Sost Is Mediated by Estrogen Receptor β. Journal of Biological Chemistry, 2013, 288, 9035-9048.	1.6	110
36	Loading-related Regulation of Transcription Factor EGR2/Krox-20 in Bone Cells Is ERK1/2 Protein-mediated and Prostaglandin, Wnt Signaling Pathway-, and Insulin-like Growth Factor-I Axis-dependent, Journal of Biological Chemistry, 2012, 287, 3946-3962	1.6	40

GABRIEL L GALEA

#	Article	IF	CITATIONS
37	Bones' adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. Journal of Bone and Mineral Research, 2012, 27, 1784-1793.	3.1	174
38	Risedronate does not reduce mechanical loading-related increases in cortical and trabecular bone mass in mice. Bone, 2011, 49, 133-139.	1.4	36
39	<i>Sost</i> downâ€regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Letters, 2011, 585, 2450-2454.	1.3	86
40	Role of Endocrine and Paracrine Factors in the Adaptation of Bone to Mechanical Loading. Current Osteoporosis Reports, 2011, 9, 76-82.	1.5	63
41	Mechanical Loading-Related Bone Gain Is Enhanced by Tamoxifen but Unaffected by Fulvestrant in Female Mice. Endocrinology, 2010, 151, 5582-5590.	1.4	43