Geoffroy Laumet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838496/publications.pdf

Version: 2024-02-01

30 papers 1,386 citations

20 h-index 28 g-index

31 all docs

31 docs citations

times ranked

31

2040 citing authors

#	Article	IF	Citations
1	Effects of placebo administration on immune mechanisms and relationships with central endogenous opioid neurotransmission. Molecular Psychiatry, 2022, 27, 831-839.	7.9	5
2	Infiltration of peripheral immune cells into the olfactory bulb in a mouse model of acute nasal inflammation. Journal of Neuroimmunology, 2022, 368, 577897.	2.3	3
3	Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain, Behavior, and Immunity, 2021, 93, 43-54.	4.1	23
4	$7\hat{l}^2$ -(3-Ethyl-cis-crotonoyloxy)- $1\hat{l}$ ±-(2-methylbutyryloxy)-3,14-dehydro-Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules, 2021, 26, 181.	3.8	22
5	The µ-δ opioid heteromer masks latent pain sensitization in neuropathic and inflammatory pain in male and female mice. Brain Research, 2021, 1756, 147298.	2.2	6
6	Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain?. Journal of NeuroImmune Pharmacology, 2021, 16, 531-547.	4.1	5
7	A Novel Syngeneic Immunocompetent Mouse Model of Head and Neck Cancer Pain Independent of Interleukin-1 Signaling. Anesthesia and Analgesia, 2021, 132, 1156-1163.	2.2	11
8	Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain, 2020, 161, 2344-2352.	4.2	55
9	CD3+ T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. Neurobiology of Pain (Cambridge, Mass), 2020, 7, 100043.	2.5	24
10	Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology, 2019, 44, 364-371.	5.4	27
11	Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiology of Pain (Cambridge, Mass), 2019, 6, 100037.	2.5	30
12	T Cells as an Emerging Target for Chronic Pain Therapy. Frontiers in Molecular Neuroscience, 2019, 12, 216.	2.9	87
13	Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain, 2019, 160, 1459-1468.	4.2	57
14	Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain interleukin-10 signaling. Neuropsychopharmacology, 2018, 43, 2597-2605.	5.4	83
15	Nerve Injury-Induced Chronic Pain Is Associated with Persistent DNA Methylation Reprogramming in Dorsal Root Ganglion. Journal of Neuroscience, 2018, 38, 6090-6101.	3.6	66
16	NMDA Receptors and Signaling in Chronic Neuropathic Pain. , 2017, , 103-119.		6
17	Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain, Behavior, and Immunity, 2017, 66, 94-102.	4.1	60
18	Pifithrin- $\hat{l}\frac{1}{4}$ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Research, 2017, 77, 742-752.	0.9	89

#	Article	IF	CITATIONS
19	CD8 ⁺ T Cells and Endogenous IL-10 Are Required for Resolution of Chemotherapy-Induced Neuropathic Pain. Journal of Neuroscience, 2016, 36, 11074-11083.	3.6	164
20	Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of $\hat{l}\frac{1}{4}$ -Opioid Receptors in Primary Sensory Neurons. Journal of Biological Chemistry, 2016, 291, 8475-8485.	3.4	56
21	ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease. EBioMedicine, 2016, 9, 278-292.	6.1	40
22	Transcriptional Regulation of Potassium Channel Expression by G9a in Neuropathic Pain. Biophysical Journal, 2016, 110, 606a.	0.5	0
23	Pannexin-1 Up-regulation in the Dorsal Root Ganglion Contributes to Neuropathic Pain Development. Journal of Biological Chemistry, 2015, 290, 14647-14655.	3.4	83
24	G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition. Nature Neuroscience, 2015, 18, 1746-1755.	14.8	159
25	Increased Spinal Cord Na+-K+-2Clâ Cotransporter-1 (NKCC1) Activity Contributes to Impairment of Synaptic Inhibition in Paclitaxel-induced Neuropathic Pain. Journal of Biological Chemistry, 2014, 289, 31111-31120.	3.4	43
26	Systematic Analysis of Candidate Genes for Alzheimer's Disease in a French, Genome-Wide Association Study. Journal of Alzheimer's Disease, 2010, 20, 1181-1188.	2.6	63
27	Is the Urea Cycle Involved in Alzheimer's Disease?. Journal of Alzheimer's Disease, 2010, 21, 1013-1021.	2.6	68
28	A study of the association between the ADAM12 and SH3PXD2A (SH3MD1) genes and Alzheimer's disease. Neuroscience Letters, 2010, 468, 1-2.	2.1	15
29	Association study of the CFH Y402H polymorphism with Alzheimer's disease. Neurobiology of Aging, 2010, 31, 165-166.	3.1	27
30	Is the ornithine transcarbamylase gene a genetic determinant of Alzheimer's disease?. Neuroscience Letters, 2009, 449, 76-80.	2.1	9