Alba GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384629/publications.pdf

Version: 2024-02-01

44 papers

1,017 citations

393982 19 h-index 30 g-index

44 all docs

44 docs citations

times ranked

44

1498 citing authors

#	Article	IF	CITATIONS
1	Recyclable Epoxy Resin via Simultaneous Dual Permanent/Reversible Crosslinking Based on Diels–Alder Chemistry. Macromolecular Chemistry and Physics, 2021, 222, 2100146.	1.1	12
2	Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites. European Polymer Journal, 2020, 123, 109415.	2.6	54
3	Dynamic polyurethane thermosets: tuning associative/dissociative behavior by catalyst selection. Polymer Chemistry, 2020, $11,5386-5396$.	1.9	44
4	Microphase Arrangement of Smart Superhydrophilic Segmented Polyurethanes at Their Interface with Water. Langmuir, 2020, 36, 13201-13209.	1.6	8
5	Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules, 2020, 53, 1368-1379.	2.2	12
6	Self-assembly of a patterned hydrophobic-hydrophilic surface by soft segment microphase separation in a segmented polyurethane: Combined experimental study and molecular dynamics simulation. Polymer, 2020, 195, 122424.	1.8	21
7	Reduced Graphene Oxide/Polymer Monolithic Materials for Selective CO2 Capture. Polymers, 2020, 12, 936.	2.0	26
8	Reprogrammable Permanent Shape Memory Materials Based on Reversibly Crosslinked Epoxy/PCL Blends. Molecules, 2020, 25, 1568.	1.7	7
9	Organocatalyzed Polymerization of PET- <i>mb</i> -poly(oxyhexane) Copolymers and Their Self-Assembly into Double Crystalline Superstructures. Macromolecules, 2019, 52, 6834-6848.	2.2	15
10	Isomorphic Polyoxyalkylene Copolyethers Obtained by Copolymerization of Aliphatic Diols. Macromolecules, 2019, 52, 3506-3515.	2.2	27
11	Synthesis and comprehensive study on industrially relevant flame retardant waterborne polyurethanes based on phosphorus chemistry. Progress in Organic Coatings, 2019, 131, 397-406.	1.9	43
12	Improving the barrier properties of a biodegradable polyester for packaging applications. European Polymer Journal, 2019, 115, 76-85.	2.6	32
13	Analysis of the Process Parameters for Obtaining a Stable Electrospun Process in Different Composition Epoxy/Poly Îμ-Caprolactone Blends with Shape Memory Properties. Polymers, 2019, 11, 475.	2.0	16
14	Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polymer International, 2019, 68, 125-133.	1.6	49
15	Miscibility and degradation of polymer blends based on biodegradable poly(butylene) Tj ETQq1 1 0.784314 rgBT	T /Overlock	R 193f 50 182
16	Nanostructure development in polystyrene-b -polybutadiene-b -poly(methyl methacrylate) (SBM) thin films by atomic force microscopy: Effect of copolymer composition and solvent. Polymer Engineering and Science, 2018, 58, 422-429.	1.5	2
17	Nanostructured polymer blends based on polystyreneâ€ <i>bâ€</i> polybutadieneâ€ <i>b</i> â€poly(methyl) Tj ET homopolymers. Polymer International, 2017, 66, 1031-1036.	TQq1 1 0.7 1.6	/84314 rgBT 4
18	<scp>D</scp> â€isosorbide and 1,3â€propanediol as plasticizers for starchâ€based films: Characterization and aging study. Journal of Applied Polymer Science, 2017, 134, .	1.3	26

#	Article	IF	CITATIONS
19	The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydrate Polymers, 2017, 166, 146-155.	5.1	24
20	Electrospinning of cationically polymerized epoxy/polycaprolactone blends to obtain shape memory fibers (SMF). European Polymer Journal, 2017, 94, 376-383.	2.6	20
21	Physicochemical and Mechanical Properties of Gelatin Reinforced with Nanocellulose and Montmorillonite. Journal of Renewable Materials, 2016, 4, 206-214.	1.1	10
22	Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes. Journal of Applied Polymer Science, 2016, 133, .	1.3	27
23	Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers. Macromolecular Rapid Communications, 2016, 37, 1135-1142.	2.0	45
24	Improved Permeability Properties for Bacterial Cellulose/Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling. Journal of Renewable Materials, 2016, 4, 57-65.	1.1	14
25	Biodegradable Copolyester Fibers by Solution Electrospinning. Journal of Renewable Materials, 2015, 3, 44-48.	1.1	0
26	Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydrate Polymers, 2015, 117, 83-90.	5.1	117
27	Microphase separation and hydrophobicity of urethane/siloxane copolymers with low siloxane content. Progress in Organic Coatings, 2014, 77, 798-802.	1.9	20
28	Preparation of superhydrophobic silica nanoparticles by microwave assisted sol–gel process. Journal of Sol-Gel Science and Technology, 2012, 61, 8-13.	1.1	13
29	Oxygen permeability through poly(ethylene-co-vinyl acetate)/clay nanocomposites prepared by microwave irradiation. Journal of Membrane Science, 2011, 373, 173-177.	4.1	13
30	Production of hydrophobic surfaces in biodegradable and biocompatible polymers using polymer solution electrospinning. Journal of Applied Polymer Science, 2011, 120, 1520-1524.	1.3	6
31	Silica nanoparticles obtained by microwave assisted sol–gel process: multivariate analysis of the size and conversion dependence. Journal of Sol-Gel Science and Technology, 2010, 53, 667-672.	1.1	14
32	Electrospinning of waterborne polyurethanes. Journal of Applied Polymer Science, 2010, 115, 1176-1179.	1.3	41
33	Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR. Biomass and Bioenergy, 2010, 34, 1573-1577.	2.9	12
34	Migration of antifog additives in agricultural films of lowâ€density polyethylene and ethyleneâ€vinyl acetate copolymers. Journal of Applied Polymer Science, 2009, 111, 2299-2307.	1.3	23
35	Role of specific interactions on fiber formation in the electrospinning of poly(vinyl) Tj ETQq1 1 0.784314 rgBT /C	Overlock 1 1.3	0 Tf 50 107 T 4
36	Electrospinning of poly (2-ethyl-2-oxazoline). Journal of Materials Science, 2009, 44, 3186-3191.	1.7	26

#	Article	IF	CITATIONS
37	Diffusivity of ethylene and propylene in atactic and isotactic polypropylene: Morphology effects and free-volume simulations. Journal of Applied Polymer Science, 2007, 104, 3871-3878.	1.3	13
38	Origins of Product Heterogeneity in the Spheripol High Impact Polypropylene Process. Industrial & Engineering Chemistry Research, 2006, 45, 4178-4187.	1.8	24
39	Determination of the self-association and inter-association equilibrium constants of a carboxylic acid and its mixtures with pyridine derivates. Vibrational Spectroscopy, 2006, 41, 21-27.	1.2	6
40	Morphology of High Impact Polypropylene Particlesâ€. Macromolecules, 2005, 38, 2795-2801.	2.2	72
41	Miscibility behaviour of amorphous poly(3-hydroxybutyrate) (a-PHB)/styrene–vinyl phenol copolymer (STY-co-VPH) blends applying an association model. Polymer, 2004, 45, 1477-1483.	1.8	11
42	Miscibility and carbon dioxide transport properties of poly(3-hydroxybutyrate) (iPHB) and its blends with different copolymers of styrene and vinyl phenol. Polymer, 2004, 45, 4139-4147.	1.8	5
43	Blends of bacterial poly(3-hydroxybutyrate) and a poly(epichlorohydrin-co-ethylene oxide) copolymer: thermal and CO2 transport properties. Polymer, 2003, 44, 7701-7708.	1.8	11
44	Miscibility and carbon dioxide transport properties of blends of bacterial poly(3-hydroxybutyrate) and a poly(vinylidene chloride-co-acrylonitrile) copolymer. Polymer, 2002, 43, 6205-6211.	1.8	15