James B Gaherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8384467/publications.pdf

Version: 2024-02-01

304743 377865 1,371 36 22 34 citations h-index g-index papers 40 40 40 1164 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Pacific OBS Research into Convecting Asthenosphere (ORCA) Experiment. Seismological Research Letters, 2022, 93, 477-493.	1.9	5
2	Investigating Short-Period Lake-Generated Microseisms Using a Broadband Array of Onshore and Lake-Bottom Seismometers. Seismological Research Letters, 2022, 93, 1585-1600.	1.9	3
3	Constraints on the Depth, Thickness, and Strength of the G Discontinuity in the Central Pacific From S Receiver Functions. Journal of Geophysical Research: Solid Earth, 2021, 126, e2019JB019256.	3.4	11
4	Shaking in the Southeastern United States: Examining Earthquakes and Blasts in the Central Georgia–South Carolina Seismic Region. Seismological Research Letters, 2021, 92, 3145-3164.	1.9	4
5	Lithosphere Structure and Seismic Anisotropy Offshore Eastern North America: Implications for Continental Breakup and Ultraâ€Slow Spreading Dynamics. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	2
6	Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa., 2020, 16, 1293-1311.		37
7	Shear attenuation and anelastic mechanisms in the central Pacific upper mantle. Earth and Planetary Science Letters, 2020, 536, 116148.	4.4	21
8	Controls on Rift Faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa. Tectonics, 2020, 39, e2019TC005633.	2.8	29
9	The Eastern North American Margin Community Seismic Experiment: An Amphibious Active―and Passive‧ource Dataset. Seismological Research Letters, 2020, 91, 533-540.	1.9	15
10	Thermochemical Modification of the Upper Mantle Beneath the Northern Malawi Rift Constrained From Shear Velocity Imaging. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008843.	2.5	19
11	Preferential localized thinning of lithospheric mantle in the melt-poor Malawi Rift. Nature Geoscience, 2020, 13, 584-589.	12.9	25
12	Kinematics of Active Deformation in the Malawi Rift and Rungwe Volcanic Province, Africa. Geochemistry, Geophysics, Geosystems, 2019, 20, 3928-3951.	2.5	41
13	Azimuthal Seismic Anisotropy of 70â€Ma Pacificâ€Plate Upper Mantle. Journal of Geophysical Research: Solid Earth, 2019, 124, 1889-1909.	3.4	16
14	Faulting processes during early-stage rifting: seismic and geodetic analysis of the 2009–2010 Northern Malawi earthquake sequence. Geophysical Journal International, 2019, 217, 1767-1782.	2.4	24
15	Highâ€Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surfaceâ€Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 2019, 124, 631-657.	3.4	52
16	Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone. Geophysical Journal International, 2019, 217, 1929-1948.	2.4	41
17	Age dependence and anisotropy of surface-wave phase velocities in the Pacific. Geophysical Journal International, 2019, 216, 640-658.	2.4	11
18	Constraints on Rift Basin Structure and Border Fault Growth in the Northern Malawi Rift From 3â€D Seismic Refraction Imaging. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,003.	3.4	27

#	Article	IF	CITATIONS
19	Seismic Evidence for Plume―and Cratonâ€Influenced Upper Mantle Structure Beneath the Northern Malawi Rift and the Rungwe Volcanic Province, East Africa. Geochemistry, Geophysics, Geosystems, 2018, 19, 3980-3994.	2.5	26
20	Crustal structure surrounding the northern Malawi rift and beneath the Rungwe Volcanic Province, East Africa. Geophysical Journal International, 2018, 215, 1410-1426.	2.4	34
21	Seismic Anisotropy of the Upper Mantle Below the Western Rift, East Africa. Journal of Geophysical Research: Solid Earth, 2018, 123, 5644-5660.	3.4	25
22	ENHANCED LITHOSPHERIC MANTLE THINNING IN THE MELT-POOR MALAWI RIFT., 2018,,.		2
23	High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 2016, 535, 538-541.	27.8	92
24	Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift. Seismological Research Letters, 2016, 87, 1406-1416.	1.9	28
25	Crust and upper mantle structure associated with extension in the <scp>W</scp> oodlark <scp>R</scp> ift, <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea from <scp>R</scp> ayleighâ€wave tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 3808-3824.	2.5	24
26	The electrical structure of the central <scp>P</scp> acific upper mantle constrained by the <scp>N</scp> oMelt experiment. Geochemistry, Geophysics, Geosystems, 2015, 16, 1115-1132.	2.5	56
27	Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 2015, 201, 1383-1398.	2.4	94
28	Anisotropy beneath a highly extended continental rift. Geochemistry, Geophysics, Geosystems, 2014, 15, 545-564.	2.5	25
29	Seismic anisotropy associated with continental lithosphere accretion beneath the CANOE array, northwestern Canada. Geology, 2010, 38, 887-890.	4.4	28
30	Evaluating hot spot-ridge interaction in the Atlantic from regional-scale seismic observations. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	26
31	Surface wave tomography of the upper mantle beneath the Reykjanes Ridge with implications for ridge a \mathbb{C}^* for the total point \mathbb{C}^* for \mathbb{C}^* and \mathbb{C}^* for \mathbb{C}^* interaction. Journal of Geophysical Research, 2007, 112, .	3.3	38
32	Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature, 2004, 432, 744-747.	27.8	85
33	Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth and Planetary Science Letters, 2004, 228, 255-265.	4.4	49
34	Seismic Evidence for Hotspot-Induced Buoyant Flow Beneath the Reykjanes Ridge. Science, 2001, 293, 1645-1647.	12.6	61
35	How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth?. Geophysical Journal International, 2000, 141, 374-390.	2.4	125
36	Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research, 1996, 101, 22291-22309.	3.3	170