Alexandra Brumberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8383954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compositionally Tuning Electron Transfer from Photoexcited Core/Shell Quantum Dots via Cation Exchange. Journal of Physical Chemistry Letters, 2022, 13, 3209-3216.	4.6	8
2	Gain roll-off in cadmium selenide colloidal quantum wells under intense optical excitation. Scientific Reports, 2022, 12, 8016.	3.3	7
3	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. Nano Letters, 2021, 21, 1288-1294.	9.1	8
4	Very Robust Spray-Synthesized CsPbI ₃ Quantum Emitters with Ultrahigh Room-Temperature Cavity-Free Brightness and Self-Healing Ability. ACS Nano, 2021, 15, 11358-11368.	14.6	15
5	Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden–Popper Phase Perovskites. ACS Nano, 2021, 15, 4165-4172.	14.6	21
6	Photothermal behaviour of titanium nitride nanoparticles evaluated by transient X-ray diffraction. Nanoscale, 2021, 13, 2658-2664.	5.6	15
7	Area and thickness dependence of Auger recombination in nanoplatelets. Journal of Chemical Physics, 2020, 153, 054104.	3.0	25
8	Transient Lattice Response upon Photoexcitation in CuInSe ₂ Nanocrystals with Organic or Inorganic Surface Passivation. ACS Nano, 2020, 14, 13548-13556.	14.6	10
9	Bright Silicon Nanocrystals from a Liquid Precursor: Quasi-Direct Recombination with High Quantum Yield. ACS Nano, 2020, 14, 3858-3867.	14.6	43
10	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nature Communications, 2019, 10, 504.	12.8	121
11	Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation. Journal of the American Chemical Society, 2019, 141, 9764-9768.	13.7	336
12	Determination of the In-Plane Exciton Radius in 2D CdSe Nanoplatelets <i>via</i> Magneto-optical Spectroscopy. ACS Nano, 2019, 13, 8589-8596.	14.6	35
13	Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K. Journal of Chemical Physics, 2019, 150, 204509.	3.0	14
14	Synthesis of Type I PbSe/CdSe Dot-on-Plate Heterostructures with Near-Infrared Emission. Journal of the American Chemical Society, 2019, 141, 5092-5096.	13.7	25
15	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	13.7	79
16	Semiconductor Nanoplatelet Excimers. Nano Letters, 2018, 18, 6948-6953.	9.1	46
17	Optical Signatures of Transiently Disordered Semiconductor Nanocrystals. ACS Nano, 2018, 12, 10008-10015.	14.6	9
18	Material Dimensionality Effects on Electron Transfer Rates Between CsPbBr ₃ and CdSe Nanoparticles. Nano Letters, 2018, 18, 4771-4776.	9.1	49

#	Article	IF	CITATIONS
19	Single-crystal <i>I</i> _{<i>h</i>} ice surfaces unveil connection between macroscopic and molecular structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5349-5354.	7.1	12
20	Producing desired ice faces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6096-100.	7.1	11
21	Best Face Forward: Crystal-Face Competition at the Ice–Water Interface. Journal of Physical Chemistry B, 2014, 118, 7972-7980.	2.6	21