Aikaterini Alexaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8383649/publications.pdf

Version: 2024-02-01

516215 500791 1,524 31 16 28 citations g-index h-index papers 36 36 36 2836 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural, functional, and immunogenicity implications of <i>F9</i> gene recoding. Blood Advances, 2022, 6, 3932-3944.	2.5	4
2	Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Computational Biology, 2021, 17, e1008805.	1.5	18
3	Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage. Genome Medicine, 2021, 13, 122.	3.6	4
4	New approaches to predict the effect of co-occurring variants on protein characteristics. American Journal of Human Genetics, 2021, 108, 1502-1511.	2.6	3
5	Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Scientific Reports, 2020, 10, 15643.	1.6	46
6	Coagulopathy and Thrombosis as a Result of Severe COVID-19 Infection: A Microvascular Focus. Thrombosis and Haemostasis, 2020, 120, 1668-1679.	1.8	75
7	Immunogenicity of Protein Therapeutics: A Lymph Node Perspective. Frontiers in Immunology, 2020, 11, 791.	2.2	11
8	TissueCoCoPUTs: Novel Human Tissue-Specific Codon and Codon-Pair Usage TablesÂBased on Differential Tissue Gene Expression. Journal of Molecular Biology, 2020, 432, 3369-3378.	2.0	28
9	Ribosome profiling of HEK293T cells overexpressing codon optimized coagulation factor IX. F1000Research, 2020, 9, 174.	0.8	2
10	Ribosome profiling of HEK293T cells overexpressing codon optimized coagulation factor IX. F1000Research, 2020, 9, 174.	0.8	3
11	Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Scientific Reports, 2019, 9, 15449.	1.6	38
12	Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. Journal of Molecular Biology, 2019, 431, 2434-2441.	2.0	100
13	The Kazusa codon usage database, CoCoPUTs, and the value of up-to-date codon usage statistics. Infection, Genetics and Evolution, 2019, 73, 266-268.	1.0	8
14	De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. Journal of Biological Chemistry, 2017, 292, 3929-3939.	1.6	46
15	Functional Studies of CCAAT/Enhancer Binding Protein Site Located Downstream of the Transcriptional Start Site. Clinical Medicine Insights Pathology, 2017, 10, 117955571769455.	0.6	3
16	Recent advances in (therapeutic protein) drug development. F1000Research, 2017, 6, 113.	0.8	348
17	A new and updated resource for codon usage tables. BMC Bioinformatics, 2017, 18, 391.	1.2	182
18	Impact of Viral Activators and Epigenetic Regulators on HIV-1 LTRs Containing Naturally Occurring Single Nucleotide Polymorphisms. BioMed Research International, 2015, 2015, 1-14.	0.9	3

#	Article	IF	CITATIONS
19	Expression of the ORMDLS, Modulators of Serine Palmitoyltransferase, Is Regulated by Sphingolipids in Mammalian Cells. Journal of Biological Chemistry, 2015, 290, 90-98.	1.6	43
20	Effect of $\hat{1}$ 4-opioid agonist DAMGO on surface CXCR4 and HIV-1 replication in TF-1 human bone marrow progenitor cells. BMC Research Notes, 2014, 7, 752.	0.6	7
21	Autophagy regulates sphingolipid levels in the liver. Journal of Lipid Research, 2014, 55, 2521-2531.	2.0	42
22	Functional properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virology Journal, 2014, 11, 92.	1.4	20
23	Modeling Bone Marrow Progenitor Cell Differentiation and Susceptibility to HIV-1 Infection. MOJ Immunology, 2014, 1, 00009-9.	11.0	5
24	HIV-1 Infection of Bone Marrow Hematopoietic Progenitor Cells and Their Role in Trafficking and Viral Dissemination. PLoS Pathogens, 2008, 4, e1000215.	2.1	122
25	Cellular Reservoirs of HIV-1 and their Role in Viral Persistence. Current HIV Research, 2008, 6, 388-400.	0.2	283
26	PMA-Induced Differentiation of a Bone Marrow Progenitor Cell Line Activates HIV-1 LTR-Driven Transcription. DNA and Cell Biology, 2007, 26, 387-394.	0.9	20
27	AP-1-directed human T cell leukemia virus type 1 viral gene expression during monocytic differentiation. Journal of Leukocyte Biology, 2006, 80, 640-650.	1.5	17
28	Title is missing!. Retrovirology, 2005, 2, P8.	0.9	0
29	Title is missing!. Retrovirology, 2005, 2, S155.	0.9	0
30	Title is missing!. Retrovirology, 2005, 2, P9.	0.9	0
31	Hamsters Fed Diets High in Saturated Fat Have Increased Cholesterol Accumulation and Cytokine Production in the Aortic Arch Compared with Cholesterol-Fed Hamsters with Moderately Elevated Plasma Non-HDL Cholesterol Concentrations. Journal of Nutrition, 2004, 134, 410-415.	1.3	31