Jianping Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8383142/publications.pdf Version: 2024-02-01

IMNEINC YU

#	Article	IF	CITATIONS
1	Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. Journal of Genetics and Genomics, 2022, 49, 506-509.	1.7	13
2	Loci and natural alleles for cadmium-mediated growth responses revealed by a genome wide association study and transcriptome analysis in rice. BMC Plant Biology, 2021, 21, 374.	1.6	7
3	Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell, 2021, 33, 566-580.	3.1	53
4	Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367, .	6.0	242
5	Pyramiding of the dep1-1 and NAL1 alleles achieves sustainable improvements in nitrogen-use efficiency and grain yield in japonica rice breeding. Journal of Genetics and Genomics, 2019, 46, 325-328.	1.7	17
6	Alternative splicing of <i>Os<scp>LG</scp>3b</i> controls grain length and yield in <i>japonica</i> rice. Plant Biotechnology Journal, 2018, 16, 1667-1678.	4.1	109
7	The C–S–A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. Journal of Experimental Botany, 2018, 69, 1485-1498.	2.4	114
8	The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. Journal of Genetics and Genomics, 2018, 45, 337-341.	1.7	14
9	Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3–OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. Journal of Experimental Botany, 2018, 69, 4723-4737.	2.4	62
10	Natural Variation in <i>OsLG3</i> Increases Drought Tolerance in Rice by Inducing ROS Scavenging. Plant Physiology, 2018, 178, 451-467.	2.3	121
11	Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 2018, 560, 595-600.	13.7	412
12	Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017, 8, 14788.	5.8	192
13	OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biology, 2017, 15, 28.	1.7	100
14	Genetic Analysis of Cold Tolerance at the Germination and Booting Stages in Rice by Association Mapping. PLoS ONE, 2015, 10, e0120590.	1.1	109