## Takahisa Kanekiyo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838279/publications.pdf Version: 2024-02-01



TAKAHISA KANEKIVO

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology, 2013,<br>9, 106-118.                                                                  | 10.1 | 2,482     |
| 2  | ApoE and Aβ in Alzheimer's Disease: Accidental Encounters or Partners?. Neuron, 2014, 81, 740-754.                                                                                    | 8.1  | 460       |
| 3  | Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nature<br>Neuroscience, 2015, 18, 978-987.                                                       | 14.8 | 334       |
| 4  | Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2017, 18, 1965.                                             | 4.1  | 273       |
| 5  | Neuronal Clearance of Amyloid-β by Endocytic Receptor LRP1. Journal of Neuroscience, 2013, 33, 19276-19283.                                                                           | 3.6  | 206       |
| 6  | The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimerââ,¬â"¢s<br>disease. Frontiers in Aging Neuroscience, 2014, 6, 93.                         | 3.4  | 199       |
| 7  | Astrocytic LRP1 Mediates Brain AÎ <sup>2</sup> Clearance and Impacts Amyloid Deposition. Journal of Neuroscience, 2017, 37, 4023-4031.                                                | 3.6  | 175       |
| 8  | LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β. Journal of Neuroscience, 2012, 32, 16458-16465.                                         | 3.6  | 174       |
| 9  | Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies.<br>Journal of Lipid Research, 2017, 58, 1267-1281.                           | 4.2  | 174       |
| 10 | APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nature Communications, 2020, 11, 5540.                           | 12.8 | 172       |
| 11 | Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic Abnormalities and Amyloid<br>Pathology in Alzheimer's Disease. Neuron, 2014, 84, 63-77.                             | 8.1  | 168       |
| 12 | Vascular Cell Senescence Contributes to Blood–Brain Barrier Breakdown. Stroke, 2016, 47, 1068-1077.                                                                                   | 2.0  | 167       |
| 13 | APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Human Molecular<br>Genetics, 2017, 26, 2690-2700.                                                       | 2.9  | 162       |
| 14 | The role of APOE in cerebrovascular dysfunction. Acta Neuropathologica, 2016, 131, 709-723.                                                                                           | 7.7  | 161       |
| 15 | Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron,<br>2020, 106, 727-742.e6.                                                             | 8.1  | 152       |
| 16 | Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression.<br>Brain, 2019, 142, 1077-1092.                                                | 7.6  | 120       |
| 17 | ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron, 2022, 110, 1304-1317.                                                               | 8.1  | 120       |
| 18 | Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-β clearance and aggregation in Alzheimer's disease. Science Translational Medicine, 2016, 8, 332ra44. | 12.4 | 115       |

ΤΑΚΑΗΙSA ΚΑΝΕΚΙΥΟ

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain. Journal of Neuroscience, 2015, 35, 5851-5859.                                                                                             | 3.6  | 110       |
| 20 | ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology. Journal of Neuroscience, 2016, 36, 3848-3859.                                                                                      | 3.6  | 109       |
| 21 | LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways.<br>Journal of Neuroinflammation, 2016, 13, 304.                                                                        | 7.2  | 101       |
| 22 | APOE4-mediated amyloid- $\hat{l}^2$ pathology depends on its neuronal receptor LRP1. Journal of Clinical Investigation, 2019, 129, 1272-1277.                                                                            | 8.2  | 96        |
| 23 | Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and<br>Clinical Evidence. CNS Drugs, 2016, 30, 773-789.                                                                      | 5.9  | 93        |
| 24 | Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. Journal of Controlled Release, 2018, 286, 264-278.                    | 9.9  | 88        |
| 25 | Modulation of Mitochondrial Complex I Activity Averts Cognitive Decline in Multiple Animal Models of Familial Alzheimer's Disease. EBioMedicine, 2015, 2, 294-305.                                                       | 6.1  | 87        |
| 26 | ABCA7 and Pathogenic Pathways of Alzheimer's Disease. Brain Sciences, 2018, 8, 27.                                                                                                                                       | 2.3  | 87        |
| 27 | <i>APOE2</i> eases cognitive decline during Aging: Clinical and preclinical evaluations. Annals of Neurology, 2016, 79, 758-774.                                                                                         | 5.3  | 77        |
| 28 | Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta<br>Neuropathologica, 2016, 132, 225-234.                                                                                             | 7.7  | 73        |
| 29 | Retinoic Acid Isomers Facilitate Apolipoprotein E Production and Lipidation in Astrocytes through the<br>Retinoid X Receptor/Retinoic Acid Receptor Pathway. Journal of Biological Chemistry, 2014, 289,<br>11282-11292. | 3.4  | 62        |
| 30 | Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem<br>Cells. Tissue Engineering - Part A, 2018, 24, 1125-1137.                                                                 | 3.1  | 55        |
| 31 | Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-β pathology in amyloid model mice. Experimental Neurology, 2018, 300, 13-21.                                                         | 4.1  | 53        |
| 32 | <p>Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties</p> . International Journal of Nanomedicine, 2019, Volume 14, 6497-6517.            | 6.7  | 51        |
| 33 | Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1.<br>Experimental Neurology, 2016, 277, 1-9.                                                                             | 4.1  | 50        |
| 34 | Apolipoprotein E Inhibits Cerebrovascular Pericyte Mobility through a RhoA Protein-mediated<br>Pathway. Journal of Biological Chemistry, 2015, 290, 14208-14217.                                                         | 3.4  | 49        |
| 35 | ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles. Pharmaceutical Research, 2019, 36, 161.                                                                            | 3.5  | 48        |
| 36 | Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate<br>proteoglycan. Molecular Neurodegeneration, 2016, 11, 37.                                                        | 10.8 | 45        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ApoE (Apolipoprotein E) in Brain Pericytes Regulates Endothelial Function in an Isoform-Dependent<br>Manner by Modulating Basement Membrane Components. Arteriosclerosis, Thrombosis, and Vascular<br>Biology, 2020, 40, 128-144. | 2.4 | 45        |
| 38 | ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23790-23796.                                           | 7.1 | 43        |
| 39 | Vascular ApoE4 Impairs Behavior by Modulating Gliovascular Function. Neuron, 2021, 109, 438-447.e6.                                                                                                                               | 8.1 | 42        |
| 40 | Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Brain Research, 2020, 1734, 146738.                                                                                                 | 2.2 | 41        |
| 41 | Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell<br>transfection. International Journal of Pharmaceutics, 2019, 566, 717-730.                                                           | 5.2 | 38        |
| 42 | Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition<br>in APP/PS1 female mice. Communications Biology, 2021, 4, 61.                                                             | 4.4 | 35        |
| 43 | Tau and apolipoprotein E modulate cerebrovascular tight junction integrity independent of cerebral amyloid angiopathy in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 1372-1383.                                      | 0.8 | 34        |
| 44 | Tyrosine-based Signal Mediates LRP6 Receptor Endocytosis and Desensitization of Wnt/β-Catenin<br>Pathway Signaling. Journal of Biological Chemistry, 2014, 289, 27562-27570.                                                      | 3.4 | 33        |
| 45 | APOE2 is associated with longevity independent of Alzheimer's disease. ELife, 2020, 9, .                                                                                                                                          | 6.0 | 33        |
| 46 | Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. Journal of<br>Pharmacology and Experimental Therapeutics, 2020, 374, 354-365.                                                                     | 2.5 | 31        |
| 47 | Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the<br>Cellular Behaviors of Isogenic Cortical Spheroids. Cells, 2019, 8, 993.                                                 | 4.1 | 29        |
| 48 | Elevated Neutrophil-Lymphocyte Ratio is Predictive of Poor Outcomes Following Aneurysmal<br>Subarachnoid Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104631.                                            | 1.6 | 29        |
| 49 | Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Regulates the Stability and Function of<br>GluA1 α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) Receptor in Neurons. PLoS ONE,<br>2014, 9, e113237.       | 2.5 | 28        |
| 50 | Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice.<br>Neurobiology of Aging, 2017, 53, 112-121.                                                                                      | 3.1 | 26        |
| 51 | Nerve Growth Factor Gene Delivery across the Blood–Brain Barrier to Reduce Beta Amyloid<br>Accumulation in AD Mice. Molecular Pharmaceutics, 2020, 17, 2054-2063.                                                                 | 4.6 | 25        |
| 52 | Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral<br>organoids. Acta Neuropathologica, 2021, 142, 807-825.                                                                     | 7.7 | 25        |
| 53 | In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102225.                                                     | 3.3 | 23        |
| 54 | Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy<br>Homeostasis and Synaptic Function in 3xTg-AD Mice. Journal of Alzheimer's Disease, 2021, 79, 335-353.                                  | 2.6 | 22        |

ΤΑΚΑΗΙSA ΚΑΝΕΚΙΥΟ

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Identification of plexin A4 as a novel clusterin receptor links two Alzheimer's disease risk genes.<br>Human Molecular Genetics, 2016, 25, 3467-3475.                                                              | 2.9  | 21        |
| 56 | Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer's disease<br>pathology in transgenic mouse model. International Journal of Biological Macromolecules, 2022, 208,<br>901-911. | 7.5  | 19        |
| 57 | Multiple system atrophy and apolipoprotein E. Movement Disorders, 2018, 33, 647-650.                                                                                                                               | 3.9  | 15        |
| 58 | 5-HT3 Antagonist Ondansetron Increases apoE Secretion by Modulating the LXR-ABCA1 Pathway.<br>International Journal of Molecular Sciences, 2019, 20, 1488.                                                         | 4.1  | 14        |
| 59 | ABCA7 Regulates Brain Fatty Acid Metabolism During LPS-Induced Acute Inflammation. Frontiers in Neuroscience, 2021, 15, 647974.                                                                                    | 2.8  | 12        |
| 60 | Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid<br>pathology in Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 93.                          | 5.2  | 9         |
| 61 | Clinicopathologic Factors Associated With Reversion to Normal Cognition in Patients With Mild<br>Cognitive Impairment. Neurology, 2022, 98, .                                                                      | 1.1  | 7         |
| 62 | Mesenchymal stem cell therapy for focal epilepsy: A systematic review of preclinical models and clinical studies. Epilepsia, 2022, 63, 1607-1618.                                                                  | 5.1  | 7         |
| 63 | Generation and validation of APOE knockout human iPSC-derived cerebral organoids. STAR Protocols, 2021, 2, 100571.                                                                                                 | 1.2  | 4         |
| 64 | Counteracting Alzheimer's disease via somatic TERT activation. Nature Aging, 2021, 1, 1081-1082.                                                                                                                   | 11.6 | 1         |