Sophie Lanone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8382691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-13 Induces Tissue Fibrosis by Selectively Stimulating and Activating Transforming Growth Factor β1. Journal of Experimental Medicine, 2001, 194, 809-822.	8.5	845
2	Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Particle and Fibre Toxicology, 2009, 6, 14.	6.2	392
3	Biomedical Applications and Potential Health Risks of Nanomaterials: Molecular Mechanisms. Current Molecular Medicine, 2006, 6, 651-663.	1.3	375
4	Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling. Journal of Clinical Investigation, 2002, 110, 463-474.	8.2	243
5	Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats. FASEB Journal, 2005, 19, 1890-1892.	0.5	230
6	Mitochondrial Respiratory Chain and NAD(P)H Oxidase Are Targets for theAntiproliferative Effect of Carbon Monoxide in Human Airway SmoothMuscle. Journal of Biological Chemistry, 2005, 280, 25350-25360.	3.4	220
7	Determinants of carbon nanotube toxicity. Advanced Drug Delivery Reviews, 2013, 65, 2063-2069.	13.7	174
8	Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB Journal, 2001, 15, 294-296.	0.5	168
9	Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxemia. FASEB Journal, 1999, 13, 1637-1646.	0.5	167
10	Induction of Heme Oxygenase-1 Inhibits NAD(P)H Oxidase Activity by Down-regulating Cytochrome b558 Expression via the Reduction of Heme Availability. Journal of Biological Chemistry, 2004, 279, 28681-28688.	3.4	164
11	Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling. Journal of Clinical Investigation, 2002, 110, 463-474.	8.2	145
12	Adverse Effects of Industrial Multiwalled Carbon Nanotubes on Human Pulmonary Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 72, 60-73.	2.3	129
13	Induction of diaphragmatic nitric oxide synthase after endotoxin administration in rats: role on diaphragmatic contractile dysfunction Journal of Clinical Investigation, 1996, 98, 1550-1559.	8.2	122
14	Muscular Contractile Failure in Septic Patients. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 2308-2315.	5.6	103
15	Biological Effects of Particles from the Paris Subway System. Chemical Research in Toxicology, 2007, 20, 1426-1433.	3.3	87
16	Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L170-L181.	2.9	86
17	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	14.6	86
18	Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H2311-H2319.	3.2	84

#	Article	lF	CITATIONS
19	Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Particle and Fibre Toxicology, 2014, 11, 23.	6.2	79
20	Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Particle and Fibre Toxicology, 2011, 8, 3.	6.2	74
21	Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Particle and Fibre Toxicology, 2012, 9, 46.	6.2	73
22	Protective Role of Heme Oxygenases against Endotoxin-induced Diaphragmatic Dysfunction in Rats. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 753-761.	5.6	65
23	Carbon Nanotubes in Macrophages: Imaging and Chemical Analysis by X-ray Fluorescence Microscopy. Nano Letters, 2008, 8, 2659-2663.	9.1	61
24	Diaphragmatic fatigue during sepsis and septic shock. Intensive Care Medicine, 2005, 31, 1611-1617.	8.2	57
25	Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity. Nanomaterials, 2014, 4, 548-582.	4.1	54
26	Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochemical Journal, 2002, 366, 399-404.	3.7	52
27	Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling. Journal of Clinical Investigation, 2002, 110, 463-474.	8.2	51
28	Respiratory toxicities of nanomaterials — A focus on carbon nanotubes. Advanced Drug Delivery Reviews, 2012, 64, 1694-1699.	13.7	49
29	Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy, 2018, 14, 1323-1334.	9.1	48
30	Activation of Cardiac Endothelium as a Compensatory Component in Endotoxin-Induced Cardiomyopathy. Circulation, 2001, 104, 3137-3144.	1.6	45
31	Peroxynitrite-Mediated Mitochondrial Dysfunction. NeuroSignals, 2001, 10, 66-80.	0.9	41
32	Heme Oxygenase-1 Prevents Airway Mucus Hypersecretion Induced by Cigarette Smoke in Rodents and Humans. American Journal of Pathology, 2008, 173, 981-992.	3.8	40
33	Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring. Nanotoxicology, 2017, 11, 484-495.	3.0	40
34	A comparative transmission electron microscopy study of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell lines. Toxicology in Vitro, 2012, 26, 57-66.	2.4	38
35	Interaction of matrix metalloproteinases with pulmonary pollutants: Table 1–. European Respiratory Journal, 2012, 39, 1021-1032.	6.7	38
36	Potential uses of carbon nanotubes in the medical field: how worried should patients be?. Nanomedicine, 2007, 2, 407-410.	3.3	34

#	Article	IF	CITATIONS
37	The role of Kupffer cells in the hepatic response to silver nanoparticles. Nanotoxicology, 2014, 8, 149-154.	3.0	34
38	Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. Journal of Allergy and Clinical Immunology, 2016, 137, 527-534.e7.	2.9	33
39	Titanium Dioxide Nanoparticles Induce Matrix Metalloprotease 1 in Human Pulmonary Fibroblasts Partly via an Interleukin-1β–Dependent Mechanism. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 354-363.	2.9	31
40	Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Particle and Fibre Toxicology, 2013, 10, 24.	6.2	29
41	Respiratory effects of manufactured nanoparticles. Revue Des Maladies Respiratoires, 2011, 28, e66-e75.	1.7	22
42	Sepsis is associated with reciprocal expressional modifications of constitutive nitric oxide synthase (NOS) in human skeletal muscle: Down-regulation of NOS1 and up-regulation of NOS3. Critical Care Medicine, 2001, 29, 1720-1725.	0.9	21
43	Exposure to metal oxide nanoparticles administered at occupationally relevant doses induces pulmonary effects in mice. Nanotoxicology, 2016, 10, 1535-1544.	3.0	21
44	SERENADE: safer and ecodesign research and education applied to nanomaterial development, the new generation of materials safer by design. Environmental Science: Nano, 2017, 4, 526-538.	4.3	21
45	Early origins of lung disease: towards an interdisciplinary approach. European Respiratory Review, 2020, 29, 200191.	7.1	21
46	Role of Nitric Oxide on Diaphragmatic Contractile Failure in Escherichia coli Endotoxemic Rats. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1998, 119, 167-175.	1.8	19
47	Activation of the ubiquitin proteolytic pathway in human septic heart and diaphragm. Cardiovascular Pathology, 2010, 19, 158-164.	1.6	18
48	Role of nitric oxide synthases in elastase-induced emphysema. Laboratory Investigation, 2011, 91, 353-362.	3.7	17
49	Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. Scientific Reports, 2018, 8, 4408.	3.3	17
50	Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. Nanomaterials, 2022, 12, 2392.	4.1	16
51	Systemic arteriovenous fistula leads to pulmonary artery remodeling and abnormal vasoreactivity in the fetal lamb. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L701-L709.	2.9	15
52	Intratracheally administered titanium dioxide or carbon black nanoparticles do not aggravate elastase-induced pulmonary emphysema in rats. BMC Pulmonary Medicine, 2012, 12, 38.	2.0	15
53	Targeting p16 ^{INK4a} Promotes Lipofibroblasts and Alveolar Regeneration after Early-Life Injury. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1088-1104.	5.6	15
54	Titanium and gold nanoparticles in asthma: the bad and the ugly. European Respiratory Journal, 2011, 37, 225-227.	6.7	11

#	Article	IF	CITATIONS
55	Beclin1 circulating levels and accelerated aging markers in COPD. Cell Death and Disease, 2018, 9, 156.	6.3	11
56	Early signs of multi-walled carbon nanotbues degradation in macrophages, via an intracellular pH-dependent biological mechanism; importance of length and functionalization. Particle and Fibre Toxicology, 2016, 13, 61.	6.2	10
57	Anesthetic concentrations of riluzole inhibit neuronal nitric oxide synthase activity, but not expression, in the rat hippocampus. Brain Research, 2000, 881, 237-240.	2.2	9
58	Macrophage autophagy protects mice from cerium oxide nanoparticle-induced lung fibrosis. Particle and Fibre Toxicology, 2021, 18, 6.	6.2	7
59	Anti-inflammatory effect of gold nanoparticles supported on metal oxides. Scientific Reports, 2021, 11, 23129.	3.3	7
60	The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials. Archives of Toxicology, 2015, 89, 1543-1556.	4.2	6
61	Substantial modification of the gene expression profile following exposure of macrophages to welding-related nanoparticles. Scientific Reports, 2018, 8, 8554.	3.3	6
62	Overexpression of <i>Spock2</i> in mice leads to altered lung alveolar development and worsens lesions induced by hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L71-L81.	2.9	6
63	Les sources de nanoparticules. Revue Francaise D'allergologie, 2010, 50, 211-213.	0.2	5
64	POLLURISK: AN INNOVATIVE EXPERIMENTAL PLATFORM TO INVESTIGATE HEALTH IMPACTS OF AIR QUALITY. WIT Transactions on Ecology and the Environment, 2018, , .	0.0	5
65	Chronic exposure to benzo(a)pyreneâ€eoupled nanoparticles worsens inflammation in a miteâ€induced asthma mouse model. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1562-1565.	5.7	4
66	Design and Characterization of an Inhalation System of Iron and Manganese Oxide Nanoparticles for Rodent Exposure. Aerosol Science and Technology, 2015, 49, 580-588.	3.1	3
67	NanoparticulesÂ: une prévention est-elle possibleÂ?. Revue Francaise D'allergologie, 2010, 50, 214-216.	0.2	2
68	Beclin-1 increases with obstructive sleep apnea severity. Sleep Medicine, 2021, 81, 474-476.	1.6	1
69	p16ink4a deletion switches emphysema to fibrosis in mouse. , 2018, , .		1
70	Diaphragmatic fatigue during sepsis and septic shock. , 2009, , 395-401.		0
71	Coating With A Polystyren Polymer Protects Against Respiratory Toxicity Of Carbon Nanotubes In Vivo In Mice. , 2010, , .		0
72	No Modification Of Elastase-induced Lung Emphysema In Rats By Carbon Black Or Titanium Dioxyde Nanoparticles. , 2010, , .		0

#	Article	IF	CITATIONS
73	Effects Of Titanium Dioxide Nanoparticles On Matrix Remodeling Markers In Human Pulmonary Fibroblasts. , 2011, , .		Ο
74	Pulmonary Lesions Among Welders Exposed To Nanoparticles From Welding Fumes. , 2011, , .		0
75	Deliberating responsibility: a collective contribution by the C'Nano IdF Nanoscience & Society Office. Foundations of Chemistry, 2015, 17, 225-245.	1.1	0
76	Lung retention of nonfibrous mineral particles in subjects free of occupational exposure. , 2015, , .		0
77	In Vivo Toxicity of Carbon Nanotubes. , 2016, , 1567-1573.		0
78	P16 in bronchopulmonary dysplasia: Early determinant of respiratory disease?. , 2017, , .		0
79	Beclin1 circulating levels and accelerated ageing markers in COPD. , 2017, , .		0
80	Increased proliferation of type 2 alveolar epithelial cells in a pneumonectomy model mice with a deletion of p16ink4a gene , 2018, , .		0
81	Atmospheric simulation chamber: a versatile tool to get a comprehensive understanding of Air Quality impacts on health in preclinical models. , 2018, , .		0
82	Diaphragmatic fatigue during sepsis and septic shock. , 2006, , 323-329.		0
	Carbon Blach Nanoparticles Selectively Alter Follicle Stimulating Hormone Expression in vitro and in		

vivo in Female Mice. Frontiers in Neuroscience, 2021, 15, 780698.