
Véronique DaËle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8382457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diurnal variation and potential sources of indoor formaldehyde at elementary school, high school and university in the Centre Val de Loire region of France. Science of the Total Environment, 2022, 811, 152271.	8.0	8
2	NO ₃ chemistry of wildfire emissions: a kinetic study of the gas-phase reactions of furans with the NO ₃ radical. Atmospheric Chemistry and Physics, 2022, 22, 1761-1772.	4.9	12
3	Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans,) Tj ETQq1	1 0.7843 2.3	14 rgBT /0
4	Gas-Phase Rate Coefficient of OH + 1,2-Epoxybutane Determined between 220 and 950 K. ACS Earth and Space Chemistry, 2021, 5, 960-968.	2.7	5
5	Atmospheric chemistry of ketones: Reaction of OH radicals with 2-methyl-3-pentanone, 3-methyl-2-pentanone and 4-methyl-2-pentanone. Science of the Total Environment, 2021, 780, 146249.	8.0	5
6	Reactions of NO ₃ with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction. Atmospheric Chemistry and Physics, 2021, 21, 13537-13551.	4.9	7
7	Gas-phase rate coefficient of OHÂ+Âcyclohexene oxide measured from 251 to 373ÂK. Chemical Physics Letters, 2021, 783, 139056.	2.6	3
8	The fate of methyl salicylate in the environment and its role as signal in multitrophic interactions. Science of the Total Environment, 2020, 749, 141406.	8.0	11
9	Kinetic and product studies of the reactions of NO3 with a series of unsaturated organic compounds. Journal of Environmental Sciences, 2020, 95, 111-120.	6.1	7
10	Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign. Atmospheric Chemistry and Physics, 2020, 20, 6921-6951.	4.9	21
11	Reactive uptake of NO2 on volcanic particles: A possible source of HONO in the atmosphere. Journal of Environmental Sciences, 2020, 95, 155-164.	6.1	5
12	Atmospheric Fate and Impact of Perfluorinated Butanone and Pentanone. Environmental Science & Technology, 2019, 53, 8862-8871.	10.0	13
13	Kinetics of the reactions of NO3 radical with alkanes. Physical Chemistry Chemical Physics, 2019, 21, 4246-4257.	2.8	12
14	Atmospheric loss of nitrous oxide (N ₂ O) is not influenced by its potential reactions with OH and NO ₃ radicals. Physical Chemistry Chemical Physics, 2019, 21, 24592-24600.	2.8	4
15	Rate coefficients for the reactions of OH radical and ozone with a series of unsaturated esters. Atmospheric Environment, 2019, 200, 243-253.	4.1	11
16	Photochemical reaction playing a key role in particulate matter pollution over Central France: Insight from the aerosol optical properties. Science of the Total Environment, 2019, 657, 1074-1084.	8.0	9
17	Kinetic and product studies of Cl atoms reactions with a series of branched Ketones. Journal of Environmental Sciences, 2018, 71, 271-282.	6.1	9
18	Fine particles at a background site in Central France: Chemical compositions, seasonal variations and pollution events. Science of the Total Environment, 2018, 612, 1159-1170.	8.0	17

Véronique DaÃ<le

#	Article	IF	CITATIONS
19	Investigation of the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone using the HELIOS chamber. Faraday Discussions, 2017, 200, 289-311.	3.2	36
20	Kinetics of the Reactions of NO3 Radical with Methacrylate Esters. Journal of Physical Chemistry A, 2017, 121, 4464-4474.	2.5	22
21	Seasonal and diurnal variations of BTEX compounds in the semi-urban environment of Orleans, France. Science of the Total Environment, 2017, 574, 1659-1664.	8.0	56
22	NitroMAC: An instrument for the measurement of HONO and intercomparison with a long-path absorption photometer. Journal of Environmental Sciences, 2016, 40, 105-113.	6.1	14
23	Atmospheric Degradation Initiated by OH Radicals of the Potential Foam Expansion Agent, CF ₃ (CF ₂) ₂ CHâ•CH ₂ (HFC-1447fz): Kinetics and Formation of Gaseous Products and Secondary Organic Aerosols. Environmental Science & amp; Technology, 2016, 50, 1234-1242.	10.0	14
24	Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2016, 120, 9049-9062.	2.5	5
25	Measurements of nitrous acid (HONO) in urban area of Shanghai, China. Environmental Science and Pollution Research, 2016, 23, 5818-5829.	5.3	25
26	Seasonal, diurnal and nocturnal variations of carbonyl compounds in the semi-urban environment of Orléans, France. Journal of Environmental Sciences, 2016, 40, 84-91.	6.1	25
27	Photocatalytic abatement results from a model street canyon. Environmental Science and Pollution Research, 2015, 22, 18185-18196.	5.3	39
28	Rate coefficients for the reaction of ozone with 2- and 3-carene. Chemical Physics Letters, 2015, 621, 71-77.	2.6	12
29	Atmospheric degradation of lindane and 1,3-dichloroacetone in the gas phase. Studies at the EUPHORE simulation chamber. Chemosphere, 2015, 138, 112-119.	8.2	17
30	Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. Journal of Environmental Management, 2015, 155, 136-144.	7.8	47
31	On-road measurements of NMVOCs and NO x : Determination of light-duty vehicles emission factors from tunnel studies in Brussels city center. Atmospheric Environment, 2015, 122, 799-807.	4.1	31
32	Atmospheric chemistry of (CF ₃) ₂ CH ₂ : OH radicals, Cl atoms and O ₃ rate coefficients, oxidation end-products and IR spectra. Physical Chemistry Chemical Physics, 2015, 17, 25607-25620.	2.8	12
33	Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Building and Environment, 2015, 84, 125-133.	6.9	78
34	Reactions of OH and Cl with isopropyl formate, isobutyl formate, n-propyl isobutyrate and isopropyl isobutyrate. Chemical Physics Letters, 2014, 602, 68-74.	2.6	3
35	Size Distribution and Optical Properties of Ambient Aerosols during Autumn in Orleans, France. Aerosol and Air Quality Research, 2014, 14, 744-755.	2.1	2
36	Absolute and relative rate constants for the reactions of OH and Cl with pentanols. Chemical Physics Letters, 2013, 582, 38-43.	2.6	12

Véronique DaÃ<le

#	Article	IF	CITATIONS
37	Atmospheric Chemistry of Benzyl Alcohol: Kinetics and Mechanism of Reaction with OH Radicals. Environmental Science & Technology, 2013, 47, 3182-3189.	10.0	18
38	Reaction of NO ₂ with Selected Conjugated Alkenes. Journal of Physical Chemistry A, 2013, 117, 14132-14140.	2.5	9
39	Studies of the Gas Phase Reactions of Linalool, 6-Methyl-5-hepten-2-ol and 3-Methyl-1-penten-3-ol with O ₃ and OH Radicals. Journal of Physical Chemistry A, 2012, 116, 6113-6126.	2.5	29
40	Thresholds of secondary organic aerosol formation by ozonolysis of monoterpenes measured in a laminar flow aerosol reactor. Journal of Aerosol Science, 2012, 43, 14-30.	3.8	19
41	A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation. Journal of Environmental Sciences, 2012, 24, 22-33.	6.1	18
42	Studies on atmospheric degradation of diazinon in the EUPHORE simulation chamber. Chemosphere, 2011, 85, 724-730.	8.2	24
43	Kinetic studies of Cl reactions with 3-buten-1-ol and 2-buten-1-ol over the temperature range 298–363K. Chemical Physics Letters, 2011, 502, 154-158.	2.6	9
44	Rate Coefficients for Reactions of OH and Cl with Esters. ChemPhysChem, 2010, 11, 4097-4102.	2.1	8
45	Ozone Formation from Illuminated Titanium Dioxide Surfaces. Journal of the American Chemical Society, 2010, 132, 8234-8235.	13.7	49
46	Kinetics and Products of Gas-Phase Reactions of Ozone with Methyl Methacrylate, Methyl Acrylate, and Ethyl Acrylate. Journal of Physical Chemistry A, 2010, 114, 8376-8383.	2.5	38
47	Reaction Rate Coefficients of OH Radicals and Cl Atoms with Ethyl Propanoate, <i>n</i> -Propyl Propanoate, Methyl 2-Methylpropanoate, and Ethyl <i>n</i> -Butanoate. Journal of Physical Chemistry A, 2009, 113, 10745-10752.	2.5	18
48	Gas phase reaction of allyl alcohol (2-propen-1-ol) with OH radicals and ozone. Physical Chemistry Chemical Physics, 2009, 11, 7619.	2.8	30
49	The near UV absorption cross-sections and the rate coefficients for the ozonolysis of a series of styrene-like compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 54-63.	3.9	25
50	Gas-phase reaction of the Cl atoms with dimethylbenzaldehyde isomers. Chemical Physics Letters, 2008, 455, 151-155.	2.6	5
51	Rate Coefficients for the Reaction of OH with a Series of Unsaturated Alcohols between 263 and 371 K. Journal of Physical Chemistry A, 2008, 112, 4444-4450.	2.5	43
52	Rate coefficients for the reactions of OH radicals with the keto/enol tautomers of 2,4-pentanedione and 3-methyl-2,4-pentanedione, allyl alcohol and methyl vinyl ketone using the enols and methyl nitrite as photolytic sources of OH. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 183-190.	3.9	39
53	Kinetics of OH Radical Reactions with Methane in the Temperature Range 295â ^{°°} 660 K and with Dimethyl Ether and Methyl-tert-butyl Ether in the Temperature Range 295â ^{°°} 618 K. Journal of Physical Chemistry A, 2002, 106, 4384-4389.	2.5	69
54	Kinetics of OH radical reactions with a series of symmetric acetals in the temperature range 293ââ,¬â€œ617 K. Physical Chemistry Chemical Physics, 2001, 3, 4939-4945.	2.8	16

Véronique DaÃ<le

#	Article	IF	CITATIONS
55	Kinetics of the reactions of CH3O with Br and BrO at 298 K. International Journal of Chemical Kinetics, 1998, 30, 249-255.	1.6	14
56	Is the reaction between CH3C(O)O2and NO3important in the night-time troposphere?. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2211-2222.	1.7	41
57	Kinetic Study of the Reactions of C2H5O and C2H5O2with NO3at 298 K. The Journal of Physical Chemistry, 1996, 100, 5737-5744.	2.9	23
58	Kinetic study of reactions of C2H5O2with NO at 298 K and 0.55 - 2 torr. International Journal of Chemical Kinetics, 1995, 27, 1121-1133.	1.6	19
59	Kinetics of the Reactions CH3O + NO, CH3O + NO3, and CH3O2 + NO3. The Journal of Physical Chemistry, 1995, 99, 1470-1477.	2.9	34