Victor A Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8382128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced precision, accuracy, efficiency, and spatial resolution of Uâ€Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	893
2	Middle Miocene closure of the Central American Seaway. Science, 2015, 348, 226-229.	12.6	497
3	Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Bulletin of the Geological Society of America, 2012, 124, 780-799.	3.3	270
4	Effects of Rapid Global Warming at the Paleocene-Eocene Boundary on Neotropical Vegetation. Science, 2010, 330, 957-961.	12.6	250
5	Arcâ€continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 2012, 117, .	3.3	168
6	The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U–Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America. Precambrian Research, 2011, 191, 58-77.	2.7	134
7	Detrital zircon ages of Neoproterozoic sedimentary successions in Uruguay and Argentina: Insights into the geological evolution of the RÃo de la Plata Craton. Precambrian Research, 2008, 167, 150-170.	2.7	115
8	Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata. Tectonophysics, 2016, 677-678, 99-114.	2.2	88
9	Geologic evolution of the Xolapa Complex, southern Mexico: Evidence from U-Pb zircon geochronology. Bulletin of the Geological Society of America, 2004, 116, 1016.	3.3	87
10	Significance of Provenance Ages from the Chiapas Massif Complex (Southeastern Mexico): Redefining the Paleozoic Basement of the Maya Block and Its Evolution in a Peri-Gondwanan Realm. Journal of Geology, 2008, 116, 619-639.	1.4	80
11	U–Pb and Lu–Hf isotope systematics of lower crust from central-southern Mexico – Geodynamic significance of Oaxaquia in a Rodinia Realm. Precambrian Research, 2010, 182, 149-162.	2.7	70
12	Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography. Journal of South American Earth Sciences, 2010, 29, 772-783.	1.4	68
13	Transition From Collisional to Subductionâ€Related Regimes: An Example From Neogene Panamaâ€Nazcaâ€ S outh America Interactions. Tectonics, 2018, 37, 119-139.	2.8	62
14	Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35′ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision. Journal of South American Earth Sciences, 2017, 76, 460-481.	1.4	49
15	Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: An example from California. American Mineralogist, 2005, 90, 864-870.	1.9	45
16	Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research, 2019, 66, 207-226.	6.0	44
17	Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. Journal of South American Earth Sciences, 2010, 29, 784-804.	1.4	43
18	From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America plate boundary. Tectonophysics, 2012, 580, 58-87.	2.2	43

VICTOR A VALENCIA

#	Article	IF	CITATIONS
19	Upper Aptian-Lower Albian Mural Formation: stratigraphy, biostratigraphy and depositional cycles on the Sonoran shelf, northern México. Cretaceous Research, 2008, 29, 249-266.	1.4	37
20	U/Pb detrital zircon provenance from late cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean arc and the South American margin. Journal of South American Earth Sciences, 2010, 29, 805-816.	1.4	37
21	The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 2018, 749, 88-103.	2.2	36
22	The age and composition of the pre-Cenozoic basement of the Jalisco Block: implications for and relation to the Guerrero composite terrane. Contributions To Mineralogy and Petrology, 2013, 166, 801-824.	3.1	35
23	The paleogene synorogenic succession in the northwestern Maracaibo block: Tracking intraplate uplifts and changes in sediment delivery systems. Journal of South American Earth Sciences, 2012, 39, 93-111.	1.4	34
24	Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin. Journal of South American Earth Sciences, 2014, 50, 75-92.	1.4	33
25	Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes. Bulletin of the Geological Society of America, 2016, 128, 807-823.	3.3	32
26	U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. Journal of Geology, 2017, 125, 487-500.	1.4	29
27	Age and tectonic setting of the Udokan sediment-hosted copper-silver deposit, Transbaikalia, Russia. Ore Geology Reviews, 2017, 86, 856-866.	2.7	26
28	Multiple metamorphic events in the Palaeozoic Mérida Andes basement, Venezuela: insights from U–Pb geochronology and Hf–Nd isotope systematics. International Geology Review, 2019, 61, 1557-1593.	2.1	22
29	Channel incision in the Rio Atenguillo, Jalisco, Mexico, defined by 36Cl measurements of bedrock. Geomorphology, 2010, 120, 279-292.	2.6	21
30	Provenance of the Eocene Soebi Blanco formation, Bonaire, Leeward Antilles: Correlations with post-Eocene tectonic evolution of northern South America. Journal of South American Earth Sciences, 2014, 52, 179-193.	1.4	20
31	Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?. Journal of South American Earth Sciences, 2013, 45, 24-41.	1.4	19
32	Regional provenance from southwestern Colombia foreâ€arc and intraâ€arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 2015, 27, 356-363.	2.1	19
33	Constraints on Trenchward Arc Migration and Backarc Magmatism in the North Patagonian Andes in the Context of Nazca Plate Rollback. Tectonics, 2019, 38, 3794-3817.	2.8	19
34	Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 2019, 330-331, 194-210.	1.4	19
35	<scp>GHR</scp> 1 Zircon – A New Eocene Natural Reference Material for Microbeam Uâ€Pb Geochronology and Hf Isotopic Analysis of Zircon. Geostandards and Geoanalytical Research, 2019, 43, 113-132.	3.1	18
36	Jurassic break-up of the Peri-Gondwanan margin in northern Colombia: Basin formation and implications for terrane transfer. Journal of South American Earth Sciences, 2019, 89, 92-117.	1.4	18

VICTOR A VALENCIA

#	Article	IF	CITATIONS
37	U/Pb LAâ€MCâ€ICPâ€MS Zircon Geochronology and Geochemistry from a Postcollisional Biotite Granite of the Baja Guajira Basin, Colombia: Implications for Late Cretaceous and Neogene Caribbean–South American Tectonics. Journal of Geology, 2009, 117, 685-692.	1.4	17
38	Bedrock and detrital zircon thermochronology to unravel exhumation histories of accreted tectonic blocks: An example from the Western Colombian Andes. Journal of South American Earth Sciences, 2020, 103, 102715.	1.4	17
39	U-PB geochronology and magnetostratigraphy of a north Patagonian syn-orogenic Miocene succession: Tectono-stratigraphic implications for the foreland system configuration. Tectonophysics, 2019, 766, 81-93.	2.2	16
40	Structural evolution of The Collón Cura basin: Tectonic implications for the north Patagonian Broken Foreland. Journal of South American Earth Sciences, 2019, 93, 424-438.	1.4	16
41	Erosion and regional exhumation of an Early Cretaceous subduction/accretion complex in the Northern Andes. International Geology Review, 2020, 62, 186-209.	2.1	16
42	Rifting evolution of the Malvinas basin, offshore Argentina: New constrains from zircon U–Pb geochronology and seismic characterization. Journal of South American Earth Sciences, 2019, 95, 102253.	1.4	15
43	New insights into petrogenesis of Miocene magmatism associated with porphyry copper deposits of the Andean Pampean flat slab, Argentina. Geoscience Frontiers, 2018, 9, 1565-1576.	8.4	14
44	Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. Journal of South American Earth Sciences, 2019, 94, 102229.	1.4	13
45	Hadean-archean detrital zircons from Jatulian quartzites and conglomerates of the Karelian craton. Doklady Earth Sciences, 2010, 431, 318-323.	0.7	12
46	Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chile (36°30′-42°S). Earth-Science Reviews, 2021, 213, 103465.	9.1	12
47	The Case for Tectonic Control on Erosional Exhumation on the Tropical Northern Andes Based on Thermochronology Data. Tectonics, 2021, 40, e2020TC006652.	2.8	11
48	Deep Crustal Faults, Shear Zones, and Magmatism in the Eastern Cordillera of Colombia: Growth of a Plateau From Teleseismic Receiver Function and Geochemical Mioâ€Pliocene Volcanism Constraints. Journal of Geophysical Research: Solid Earth, 2019, 124, 9833-9851.	3.4	10
49	Late Cretaceous porphyry copper mineralization in Sonora, Mexico: Implications for the evolution of the Southwest North America porphyry copper province. Mineralium Deposita, 2014, 49, 879-884.	4.1	9
50	Correlation and Late-Stage Deformation of Liv Group Volcanics in the Ross-Delamerian Orogen, Antarctica, from New U-Pb Ages. Journal of Geology, 2018, 126, 307-323.	1.4	9
51	Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 2021, 111, 103439.	1.4	9
52	Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina: Constraints from Re–Os molybdenite dating. Mineralium Deposita, 2008, 43, 591-597.	4.1	8
53	The deep magmatic cumulate roots of the Acadian orogen, eastern North America. Geology, 2021, 49, 168-173.	4.4	7
54	Reply to comment on "U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico―by Talavera et al Earth and Planetary Science Letters, 2006, 245, 476-480.	4.4	6

#	Article	IF	CITATIONS
55	IMPROVING FOOD THERMAL PROCESSING: A DEATH-TIME STUDY ON PROCESSED MEAT PRODUCTS. Journal of Food Processing and Preservation, 2013, 37, 189-197.	2.0	5
56	Tectono-stratigraphic evolution of the northeastern sector of the Ñirihuau basin, North Patagonian Andes, Argentina: Insights from sedimentology and geochronology data of the Ñirihuau Formation. Journal of South American Earth Sciences, 2021, 111, 103487.	1.4	5
57	U–Pb detrital zircon ages in the Lajas Formation at Portada Covunco: Maximum depositional age and provenance implications for the Neuquén Basin, Argentina. Journal of South American Earth Sciences, 2021, 110, 103325.	1.4	4
58	Paleozoic evolution and heterogeneity of sediment provenance in the Permian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 588, 110820.	2.3	4
59	Timing of sediment-hosted Cu-Ag mineralization in the Trans-Hudson orogen at Janice Lake, Wollaston Domain, Saskatchewan, Canada. Mineralium Deposita, 2019, 54, 81-100.	4.1	2
60	Uâ€₽b dating of zircon: A sourcing method for pottery from La Morena archaeological site, northâ€west Colombia*. Archaeometry, 2020, 62, 439-468.	1.3	2
61	On the timing and metallogenic implications of the sediment-hosted stratiform copper–silver mineralization in the Creston Formation (Belt-Purcell Supergroup), British Columbia, Canada. Ore Geology Reviews, 2021, 131, 104032.	2.7	2
62	Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 2021, 820, 229132.	2.2	1