Daisuke Takezawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838182/publications.pdf

Version: 2024-02-01

394421 2,380 25 19 citations h-index papers

25 g-index 29 29 29 2612 docs citations times ranked citing authors all docs

580821

#	Article	IF	CITATIONS
1	Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens. Current Biology, 2022, 32, 164-175.e8.	3.9	11
2	<i>Arabidopsis</i> group C Raf-like protein kinases negatively regulate abscisic acid signaling and are direct substrates of SnRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	25
3	Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. Plant Physiology, 2021, 185, 533-546.	4.8	14
4	Molecular biology of mosses. Plant Molecular Biology, 2021, 107, 209-211.	3.9	0
5	Decoding <scp>ABA</scp> and osmostress signalling in plants from an evolutionary point of view. Plant, Cell and Environment, 2020, 43, 2894-2911.	5.7	39
6	Arabidopsis Rafâ€like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant Journal, 2020, 103, 634-644.	5.7	71
7	SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Communications Biology, 2019, 2, 30.	4.4	76
8	Archetypal Roles of an Abscisic Acid Receptor in Drought and Sugar Responses in Liverworts. Plant Physiology, 2019, 179, 317-328.	4.8	46
9	Phosphoproteomic profiling reveals <scp>ABA</scp> â€responsive phosphosignaling pathways in <i>Physcomitrella patens</i> . Plant Journal, 2018, 94, 699-708.	5.7	48
10	Mechanisms Underlying Freezing and Desiccation Tolerance in Bryophytes. Advances in Experimental Medicine and Biology, 2018, 1081, 167-187.	1.6	10
11	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
12	Abscisic acidâ€induced gene expression in the liverwort <i>Marchantia polymorpha</i> is mediated by evolutionarily conserved promoter elements. Physiologia Plantarum, 2016, 156, 407-420.	5.2	20
13	Epoxycarotenoidâ€mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes. New Phytologist, 2015, 206, 209-219.	7.3	35
14	Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6388-96.	7.1	137
15	ABA as a Universal Plant Hormone. Progress in Botany Fortschritte Der Botanik, 2014, , 57-96.	0.3	37
16	Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha. Biochemical and Biophysical Research Communications, 2014, 454, 588-593.	2.1	14
17	Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. Journal of Plant Physiology, 2014, 171, 1334-1343.	3.5	28
18	Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nature Communications, 2013, 4, 2219.	12.8	142

#	ARTICLE	IF	CITATION
19	Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. Journal of Plant Physiology, 2012, 169, 137-145.	3.5	62
20	ABA in bryophytes: how a universal growth regulator in life became a plant hormone?. Journal of Plant Research, 2011, 124, 437-453.	2.4	122
21	Evolutionarily Conserved Regulatory Mechanisms of Abscisic Acid Signaling in Land Plants: Characterization of <i>ABSCISIC ACID INSENSITIVE1</i> Like Type 2C Protein Phosphatase in the Liverwort <i>Marchantia polymorpha</i> . Plant Physiology, 2010, 152, 1529-1543.	4.8	96
22	Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry, 2006, 67, 702-709.	2.9	61
23	Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta, 2005, 220, 414-423.	3.2	100
24	Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. Journal of Plant Physiology, 2005, 162, 169-180.	3.5	117
25	Abscisic acid-induced freezing tolerance in the mossPhyscomitrella patens is accompanied by increased expression of stress-related genes. Journal of Plant Physiology, 2003, 160, 475-483.	3.5	90