Snezana Boskovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8381680/publications.pdf

Version: 2024-02-01

516710 477307 64 980 16 29 citations g-index h-index papers 65 65 65 1124 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The size and strain effects on the Raman spectra of Ce1â^'xNdxO2â^'Î^ (0â%xâ%0.25) nanopowders. Solid State Communications, 2006, 137, 387-390.	1.9	137
2	Ce1â^'xY (Nd)xO2â^'Î^nanopowders: potential materials for intermediate temperature solid oxide fuel cells. Journal of Physics Condensed Matter, 2006, 18, S2061-S2068.	1.8	65
3	Self-propagating room temperature synthesis of nanopowders for solid oxide fuel cells (SOFC). Journal of Power Sources, 2005, 145, 237-242.	7.8	46
4	Toughening of SiC matrix with in-situ created TiB2 particles. Ceramics International, 2010, 36, 2181-2188.	4.8	44
5	Influence of fluorine ion on the spinel synthesis. Journal of Materials Science Letters, 1982, 1, 507-510.	0.5	41
6	Modified glycine nitrate procedure (MGNP) for the synthesis of SOFC nanopowders. Ceramics International, 2007, 33, 89-93.	4.8	40
7	Temperature-dependent Raman study of Ce0.75Nd0.25O2â^Î nanocrystals. Applied Physics Letters, 2007, 91, 203118.	3.3	38
8	Synthesis and characterization of ceria based nanometric powders. Journal of Power Sources, 2009, 193, 146-149.	7.8	34
9	Doped and Co-doped CeO2: Preparation and properties. Ceramics International, 2008, 34, 2001-2006.	4.8	30
10	Formation of celsian from mechanically activated BaCO3–Al2O3–SiO2 mixtures. Journal of Alloys and Compounds, 1999, 290, 230-235.	5.5	24
11	Effect of \hat{I}^2 -Si3N4 seeds on densification and fracture toughness of silicon nitride. Ceramics International, 2006, 32, 303-307.	4.8	24
12	Chemical reduction of nanocrystalline CeO2. Ceramics International, 2009, 35, 195-198.	4.8	24
13	Characterization of nanometric multidoped ceria powders. Journal of Alloys and Compounds, 2010, 507, 279-285.	5.5	21
14	Studies on structural, morphological and electrical properties of Ce1â^'xErxO2â^'Î' (xÂ=Â0.05â€"0.20) as solid electrolyte for IT â€" SOFC. Materials Chemistry and Physics, 2015, 153, 422-431.	4.0	19
15	Influence of mechanical activation and fluorine ion on forsterite formation. Powder Technology, 2001, 114, 84-88.	4.2	18
16	High coercivity of \hat{l}^3 -Fe2O3 nanoparticles obtained by a mechanochemically activated solid-state displacement reaction. Scripta Materialia, 2007, 56, 883-886.	5.2	18
17	Raman study of Ba-doped ceria nanopowders. Science of Sintering, 2007, 39, 281-286.	1.4	16
18	Nanopowders properties and sintering of CaMnO3 solid solutions. Journal of Alloys and Compounds, 2008, 463, 282-287.	5.5	16

#	Article	IF	CITATIONS
19	Pressureless sintering of internally synthesized SiC-TiB2 composites with improved fracture strength. Journal of Alloys and Compounds, 2011, 509, 990-996.	5 . 5	16
20	Preparation of basalt-based glass ceramics. Journal of the Serbian Chemical Society, 2003, 68, 505-510.	0.8	16
21	Electrical properties of multidoped ceria. Ceramics International, 2014, 40, 9285-9292.	4.8	15
22	Kinetics of the α-β phase transformation in seeded Si3N4 ceramics. Science of Sintering, 2008, 40, 263-270.	1.4	15
23	Phase composition and fracture toughness of Si3N4–ZrO2 with CeO2 additions. Ceramics International, 1999, 25, 41-47.	4.8	14
24	Synthesis of Si3N4-celsian composite materials. Ceramics International, 2000, 26, 33-37.	4.8	14
25	Preparation, sintering and electrical properties of nano-grained multidoped ceria. Ceramics International, 2010, 36, 121-127.	4.8	14
26	Electrical characterization of multidoped ceria ceramics. Ceramics International, 2013, 39, 1249-1255.	4.8	14
27	Decrease of the MgA12O4 formation temperature. Powder Technology, 1997, 92, 271-274.	4.2	13
28	Fabrication of SiC by carbothermal-reduction reactions of mountain leather asbestos. Journal of Alloys and Compounds, 2008, 464, 270-276.	5 . 5	13
29	Preparation of Porous Silica Ceramics Using the Wood Template. Materials and Manufacturing Processes, 2009, 24, 1109-1113.	4.7	12
30	Synthesis and characterization of the nanometric Pr-doped ceria. Journal of Alloys and Compounds, 2010, 505, 235-238.	5.5	12
31	Magnetic properties of nanosized mixed valent manganites CaMnO3 and Ca0.7La0.3Mn1â^'xCexO3 (x=0;) Tj ET	Qq <u>1</u> 1 0.7	84314 rgBT
32	Synthesis, calcination and characterization of Nanosized ceria powders by self-propagating room temperature method. Ceramics International, 2013, 39, 5007-5012.	4.8	11
33	Influence of temperature and dopant concentration on structural, morphological and optical properties of nanometric Ce1â"Er O2â"Î (xÂ=Â0.05–0.20) as a pigment. Dyes and Pigments, 2015, 123, 116-	-12 ³ 4. ⁷	11
34	Transition of \hat{I}^3 -Al2O3 into \hat{I}_\pm -Al2O3 during vibro milling. Powder Technology, 2000, 107, 48-53.	4.2	10
35	New synthetic route for nanocrystalline boron nitride powder. Materials Letters, 2011, 65, 307-309.	2.6	10
36	Synthesis of "in situ" reinforced silicon nitride composites. Journal of the Serbian Chemical Society, 2004, 69, 59-67.	0.8	10

#	Article	IF	CITATIONS
37	Sintering of Si3N4 in the presence of additives from Y2O3-SiO2-Al2O3 system. Journal of Materials Science, 1990, 25, 1513-1516.	3.7	9
38	Crystal structure of Ce-doped CaMnO3 perovskite. Ceramics International, 2009, 35, 787-790.	4.8	9
39	Reaction sintering of Al2O3 in the presence of the liquid phase. Ceramics International, 1993, 19, 235-240.	4.8	8
40	Low temperature Ce2Si2O7 polymorph formed by mechanical activation. Materials Chemistry and Physics, 2006, 95, 150-153.	4.0	8
41	Contribution to phase equilibria in the Ce2O3 rich part of the Ce2O3–SiO2–ZrO2 system. Journal of the European Ceramic Society, 2007, 27, 523-526.	5.7	7
42	Synthesis, densification and characterization of Ag doped ceria nanopowders. Journal of the European Ceramic Society, 2020, 40, 1983-1988.	5.7	6
43	Carbonitriding reactions of diatomaceous earth: phase evolution and reaction mechanisms. Journal of the Serbian Chemical Society, 2006, 71, 677-683.	0.8	6
44	Lattice Parameters of Gd-Doped Ceria Electrolytes. Materials Science Forum, 2005, 494, 175-180.	0.3	5
45	Sol–Gel Combustion Synthesis of La _{9.33} (SiO ₄) ₆ O ₂ Oxyapatite. Materials and Studies on S	4.7	5
46	Ce _{0.8} Nd _{0.0025} Sm _{0.0025} Gd _{0.005} Dy _{0.095} Y< xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:mrow><mml:mn< td=""><td>sub>0.095</td><td>)O<m< td=""></m<></td></mml:mn<></mml:mrow></mml:mrow>	sub>0.095)O <m< td=""></m<>

#	Article	IF	CITATIONS
55	Reaction of Ce _{1-x} Re _x O _{2-δ} Nanopowders Synthesis. Materials Science Forum, 2006, 518, 95-100.	0.3	1
56	Rietveld Refinement of Crystal Phases (Ca _{1-x} 1-x with Perovskite-Type Structure. Materials Science Forum, 2007, 555, 231-236.	0.3	1
57	Synthesis of biomorphic SiC and SiO2 ceramics. Journal of the Serbian Chemical Society, 2008, 73, 745-751.	0.8	1
58	Influence of the particle size reduction on magnetic properties of electron-doped Ca1-xYxMnO3. Nuclear Technology and Radiation Protection, 2012, 27, 351-354.	0.8	1
59	Nanometric solid solutions of the fluorite and perovskite type crystal structures: Synthesis and properties. Processing and Application of Ceramics, 2012, 6, 123-131.	0.8	1
60	Phase Evolution of Si ₃ N ₄ Ceramic with Additives from Li ₂ O-Y ₂ O-Sub>3. Materials Science Forum, 2004, 453-454, 447-452.	0.3	0
61	The importance of social support in adaptation of patients with malignant diseases. Archive of Oncology, 2002, 10, 237-237.	0.2	O
62	Nursing interventions in prevention of the complication in locoregional administration of chemotherapy through port-a-cath system. Archive of Oncology, 2003, 11, 225-225.	0.2	0
63	Attitudes of patients with cancer toward the diagnosis, treatment and prognosis of the disease and their influence on the process of adaptation. Archive of Oncology, 2003, 11, 226-226.	0.2	0
64	Synthesis of biomorphaus SiC-ceramics. Hemijska Industrija, 2007, 61, 75-78.	0.7	0