Ian S Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8381657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A preliminary evaluation of a high temporal resolution data-driven motion correction algorithm for rubidium-82 on a SiPM PET-CT system. Journal of Nuclear Cardiology, 2022, 29, 56-68.	2.1	13
2	The prevalence of image degradation due to motion in rest-stress rubidium-82 imaging on a SiPM PET-CT system. Journal of Nuclear Cardiology, 2022, 29, 1596-1606.	2.1	8
3	Incremental value of epicardial fat volume to coronary artery calcium score and traditional risk factors for predicting myocardial ischemia in patients with suspected coronary artery disease. Journal of Nuclear Cardiology, 2022, 29, 1583-1592.	2.1	12
4	Advances in PET/CT Technology: An Update. Seminars in Nuclear Medicine, 2022, 52, 286-301.	4.6	12
5	Assessment of motion correction in dynamic rubidium-82 cardiac PET with and without frame-by-frame adjustment of attenuation maps for calculation of myocardial blood flow. Journal of Nuclear Cardiology, 2021, 28, 1334-1346.	2.1	15
6	What is the optimal activity ratio for same-day myocardial perfusion SPECT?. Journal of Nuclear Cardiology, 2021, 28, 350-353.	2.1	4
7	Spatial dependence of activity concentration recovery for a conjugate gradient (Siemens xSPECT) algorithm using manufacturer-defined reconstruction presets. Nuclear Medicine Communications, 2019, 40, 287-293.	1.1	6
8	A tale of two phases: Can the worst of scans become the best of scans with motion correction?. Journal of Nuclear Cardiology, 2019, 26, 1930-1933.	2.1	1
9	Assessing time-of-flight signal-to-noise ratio gains within the myocardium and subsequent reductions in administered activity in cardiac PET studies. Journal of Nuclear Cardiology, 2019, 26, 405-412.	2.1	8
10	The impact of prompt gamma compensation on myocardial blood flow measurements with rubidium-82 dynamic PET. Journal of Nuclear Cardiology, 2018, 25, 596-605.	2.1	7
11	Understanding the impact of advanced PET reconstruction in cardiac PET: The devil is in the details. Journal of Nuclear Cardiology, 2018, 25, 1546-1549.	2.1	1
12	Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. Journal of Nuclear Cardiology, 2018, 25, 1784-1846.	2.1	241
13	Evaluation of general-purpose collimators against high-resolution collimators with resolution recovery with a view to reducing radiation dose in myocardial perfusion SPECT: A preliminary phantom study. Journal of Nuclear Cardiology, 2017, 24, 596-604.	2.1	5
14	Harmonizing standardized uptake value recovery between two PET/CT systems from different manufacturers when using resolution modelling and time-of-flight. Nuclear Medicine Communications, 2017, 38, 650-655.	1.1	8
15	The performance of quantitation methods in the evaluation of cardiac implantable electronic device (CIED) infection: A technical review. Journal of Nuclear Cardiology, 2016, 23, 1457-1466.	2.1	31
16	Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT. Nuclear Medicine Communications, 2016, 37, 1212-1217.	1.1	39
17	The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18F-FDG PET. Nuclear Medicine Communications, 2015, 36, 728-737.	1.1	12
18	Impact of point spread function modelling and time of flight on FDG uptake measurements in lung lesions using alternative filtering strategies. EJNMMI Physics, 2014, 1, 99.	2.7	67

#	Article	IF	CITATIONS
19	Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. Journal of Nuclear Cardiology, 2014, 21, 467-474.	2.1	52
20	Reduced-count myocardial perfusion SPECT with resolution recovery. Nuclear Medicine Communications, 2012, 33, 121-129.	1.1	17
21	PET time-of-flight performance using analytic modeling and offset point-sources measurements. , 2010, , .		1