
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8381617/publications.pdf Version: 2024-02-01

HONG-TAO NIE

#	Article	IF	CITATIONS
1	Clam Genome Sequence Clarifies the Molecular Basis of Its Benthic Adaptation and Extraordinary Shell Color Diversity. IScience, 2019, 19, 1225-1237.	4.1	81
2	The HSP70 gene expression responses to thermal and salinity stress in wild and cultivated Manila clam Ruditapes philippinarum. Aquaculture, 2017, 470, 149-156.	3.5	46
3	Transcriptomic responses to low temperature stress in the Manila clam, Ruditapes philippinarum. Fish and Shellfish Immunology, 2016, 55, 358-366.	3.6	45
4	Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, <i>Ruditapes philippinarum</i> . Aquaculture Research, 2017, 48, 2778-2786.	1.8	42
5	Construction of a High-Density Genetic Map and Quantitative Trait Locus Mapping in the Manila clam Ruditapes philippinarum. Scientific Reports, 2017, 7, 229.	3.3	40
6	High throughput sequencing of RNA transcriptomes in Ruditapes philippinarum identifies genes involved in osmotic stress response. Scientific Reports, 2017, 7, 4953.	3.3	36
7	Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genomics, 2020, 21, 318.	2.8	34
8	Chromosome-Level Clam Genome Helps Elucidate the Molecular Basis of Adaptation to a Buried Lifestyle. IScience, 2020, 23, 101148.	4.1	33
9	Transcriptomic analysis of Ruditapes philippinarum under aerial exposure and reimmersion reveals genes involved in stress response and recovery capacity of the Manila clam. Aquaculture, 2020, 524, 735271.	3.5	28
10	Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics, 2020, 112, 2011-2020.	2.9	27
11	Molecular cloning and expression analysis of C-type lectin (RpCTL) in Manila clam Ruditapes philippinarum after lipopolysaccharide challenge. Fish and Shellfish Immunology, 2019, 86, 981-993.	3.6	22
12	New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics, 2020, 21, 531.	2.8	22
13	Genetic diversity and structure of Manila clam (Ruditapes philippinarum) populations from Liaodong peninsula revealed by SSR markers. Biochemical Systematics and Ecology, 2015, 59, 116-125.	1.3	19
14	Stress levels over time in Ruditapes philippinarum: The effects of hypoxia and cold stress on hsp70 gene expression. Aquaculture Reports, 2018, 12, 1-4.	1.7	17
15	Physiological and gene expression analysis of the Manila clam Ruditapes philippinarum in response to cold acclimation. Science of the Total Environment, 2020, 742, 140427.	8.0	17
16	Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Cell Stress and Chaperones, 2018, 23, 179-187.	2.9	16
17	Comparative transcriptome analysis to reveal the genes and pathways associated with adaptation strategies in two different populations of Manila clam (Ruditapes philippinarum) under acute temperature challenge. Aquaculture, 2022, 552, 737999.	3.5	16
18	Molecular cloning and characterization of Yâ€box gene (Rpybx) from Manila clam and its expression analysis in different strains under lowâ€temperature stress. Animal Genetics, 2020, 51, 430-438.	1.7	14

#	Article	IF	CITATIONS
19	Transcriptomic analysis provides insights into candidate genes and molecular pathways involved in growth of Manila clam Ruditapes philippinarum. Functional and Integrative Genomics, 2021, 21, 341-353.	3.5	13
20	Development of four multiplex PCRs in the Zhikong scallop (Chlamys farreri) and their validation in parentage assignment. Biochemical Systematics and Ecology, 2012, 44, 96-101.	1.3	11
21	Centromere mapping in the Pacific abalone (<i>Haliotis discus hannai</i>) through halfâ€ŧetrad analysis in gynogenetic diploid families. Animal Genetics, 2012, 43, 290-297.	1.7	11
22	Physiological and biochemical responses of <i>Dosinia corrugata</i> to different thermal and salinity stressors. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2018, 329, 15-22.	1.9	11
23	Genetic variation and population structure of different geographical populations of Meretrix petechialis based on mitochondrial gene COI. Journal of Genetics, 2019, 98, 1.	0.7	11
24	Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam <i>Ruditapes philippinarum</i> . Animal Biotechnology, 2021, 32, 439-450.	1.5	11
25	Molecular Mechanisms Underlying Vibrio Tolerance in Ruditapes philippinarum Revealed by Comparative Transcriptome Profiling. Frontiers in Immunology, 2022, 13, .	4.8	11
26	Transcriptomic analysis of Manila clam Ruditapes philippinarum under lipopolysaccharide challenge provides molecular insights into immune response. Fish and Shellfish Immunology, 2020, 106, 110-119.	3.6	10
27	Modulated Expression and Activities of Ruditapes philippinarum Enzymes After Oxidative Stress Induced by Aerial Exposure and Reimmersion. Frontiers in Physiology, 2020, 11, 500.	2.8	10
28	Identification of shell-color-related microRNAs in the Manila clam Ruditapes philippinarum using high-throughput sequencing of small RNA transcriptomes. Scientific Reports, 2021, 11, 8044.	3.3	10
29	Molecular cloning and expression analysis of tyrosinases (<i>tyr</i>) in four shell-color strains of Manila clam <i>Ruditapes philippinarum</i> . PeerJ, 2020, 8, e8641.	2.0	10
30	De novo assembly, gene annotation, and marker development using Illumina paired-end transcriptome sequencing in the Crassadoma gigantea. Gene, 2018, 658, 54-62.	2.2	9
31	Physiological and biochemical responses of different shell color strains of Manila clam to low salinity challenges. Aquaculture Reports, 2020, 16, 100260.	1.7	9
32	Genome-wide identification and transcriptome-based expression profiling of Wnt gene family in Ruditapes philippinarum. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 35, 100709.	1.0	9
33	Genetic Positioning of Centromeres through Half-Tetrad Analysis in Gynogenetic Diploid Families of the Zhikong Scallop (Chlamys farreri). Marine Biotechnology, 2013, 15, 1-15.	2.4	8
34	Correlation and path analysis of morphological and weight traits in marine gastropod Glossaulax reiniana. Chinese Journal of Oceanology and Limnology, 2014, 32, 821-827.	0.7	8
35	Type II ice structuring protein (ISP II) gene and its potential role in low temperature tolerance in Manila clam, Ruditapes philippinarum. Aquaculture, 2022, 549, 737723.	3.5	8
36	Microsatellite–centromere mapping in zhikong scallop (Chlamys farreri) through half-tetrad analysis in D-shaped larvae of gynogenetic diploid families. Aquaculture, 2009, 293, 29-34.	3.5	7

#	Article	IF	CITATIONS
37	Expression analyses of C-type lectins (CTLs) in Manila clam under cold stress provide insights for its potential function in cold resistance of Ruditapes philippinarum. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 230, 108708.	2.6	7
38	Genome-wide investigation and expression analysis of MACPF gene family reveals its immune role in response to bacterial challenge of Manila clam. Genomics, 2021, 113, 1136-1145.	2.9	7
39	Apextrin from Ruditapes philippinarum functions as pattern recognition receptor and modulates NF-κB pathway. International Journal of Biological Macromolecules, 2022, 214, 33-44.	7.5	7
40	Microsatellite-centromere mapping in sea cucumber (Apostichopus japonicus) using gynogenetic diploid families. Aquaculture, 2011, 319, 67-71.	3.5	6
41	Development and characterization of EST-derived microsatellite makers for Manila clam (Ruditapes) Tj ETQq1 1 ().784314 0 . 8	rgBT /Overl <mark>oc</mark>
42	Characterization of fourteen single nucleotide polymorphism markers in the Manila clam (Ruditapes) Tj ETQq0 0	0 rg.BT /O	verlock 10 Tf
43	Seasonal Variations in Biochemical Composition of the Clam <i>Dosinia corrugate</i> in Relation to the Reproductive Cycle and Environmental Conditions. Journal of Shellfish Research, 2016, 35, 369-377.	0.9	6
44	Molecular characterization and expression analysis of fibrinogen related protein (FREP) genes of Manila clam (Ruditapes philippinarum) after lipopolysaccharides challenge. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108672.	2.6	6
45	MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). Marine Biotechnology, 2021, 23, 976-993.	2.4	6
46	Development and characterization of 38 microsatellite makers for Manila clam (Ruditapes) Tj ETQq0 0 0 rgBT /O	verlock 10 0.8) Tf ₅ 50 382 Td
47	Transcriptomic analysis of the ark shell Scapharca kagoshimensis: De novo assembly and identification of genes and pathways involved growth. Aquaculture Reports, 2020, 18, 100522.	1.7	5
48	Analysis of differential gene expression by SRAP-cDNA in mantle tissue of <i>Meretrix petechialis</i> with different external shell color. Animal Biotechnology, 2021, 32, 31-37.	1.5	5
49	Chromosomeâ€level genome assembly of <i>ScapharcaÂkagoshimensis</i> reveals the expanded molecular basis of heme biosynthesis in ark shells. Molecular Ecology Resources, 2022, 22, 295-306.	4.8	5
50	Molecular cloning and expression analysis of inhibitor of growth protein 3 (ING3) in the Manila clam, Ruditapes philippinarum. Molecular Biology Reports, 2014, 41, 3583-3590.	2.3	4
51	Microsatellite-centromere mapping in Japanese scallop (Patinopecten yessoensis) through half-tetrad analysis in gynogenetic diploid families. Journal of Ocean University of China, 2016, 15, 541-548.	1.2	4
52	Genetic Variation and Differentiation in Wild and Selected Manila Clam Inferred from Microsatellite Loci. Journal of Shellfish Research, 2017, 36, 559-565.	0.9	4
53	The genetic diversity of wild and cultivated Manila clam (Ruditapes philippinarum) revealed by 29 novel microsatellite markers. Electronic Journal of Biotechnology, 2018, 34, 17-21.	2.2	4
54	Genome-wide identification and analysis of HECT E3 ubiquitin ligase gene family in Ruditapes philippinarum and their involvement in the response to heat stress and Vibrio anguillarum infection. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2022, 43, 101012.	1.0	4

#	Article	IF	CITATIONS
55	Genotyping based on telomeric microsatellite loci for verifying triploidy in the Pacific oyster, Crassostrea gigas. Biochemical Systematics and Ecology, 2014, 54, 326-332.	1.3	3
56	RNA-Seq analysis of differentially expressed genes in the grand jackknife clam Solen grandis under aerial exposure. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2018, 28, 54-62.	1.0	3
57	Genetic diversity and population structure of <i>Meretrix petechialis</i> in China revealed by sequence-related amplified polymorphism markers. PeerJ, 2020, 8, e8723.	2.0	3
58	Genetic variation and population structure of different geographical populations of based on mitochondrial gene COI. Journal of Genetics, 2019, 98, .	0.7	3
59	Isolation and characterization of fourteen polymorphic microsatellite loci in the Manila clam (Ruditapes philippinarum). Conservation Genetics Resources, 2014, 6, 251-253.	0.8	2
60	Polymorphic Microsatellite Markers for Solen grandis and Their Cross-Species Amplification in Three Other Species. Animal Biotechnology, 2019, 30, 82-86.	1.5	2
61	Genome-wide identification and expression profiling of TYR gene family in Ruditapes philippinarum under the challenge of Vibrio anguillarum. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 37, 100788.	1.0	2
62	Molecular mechanisms of wound healing and regeneration of siphon in the Manila clam Ruditapes philippinarum revealed by transcriptomic analysis. Genomics, 2021, 113, 1011-1025.	2.9	2
63	Isolation and characterization of 18 polymorphic microsatellite loci in the surf clam (Mactra) Tj ETQq1 1 0.7843	14 rggT /(Overlock 10 T
64	Genetic diversity and differentiation of nine populations of the hard clam (Meretrix petechialis) assessed by EST-derived microsatellites. Electronic Journal of Biotechnology, 2020, 48, 23-28.	2.2	1
65	Molecular cloning and expression analysis of mc5r like genes (mc5rl) in Ruditapes philippinarum (Manila clam) after aerial exposure and low-temperature stress. Molecular Biology Reports, 2020, 47, 8891-8901.	2.3	1
66	Characterization of Novel EST-SSR in the Clam Meretrix petechialis and Cross-Species Amplification in Three Other Species. Journal of Shellfish Research, 2018, 37, 959.	0.9	1
67	Population genomic evidence for genetic divergence in the Northwest Pacific Ark shell (Scapharca) Tj ETQq1 1 ().784314 1.7	rgBT /Overloc
68	Amplified fragment length polymorphism analysis to assess crossover interference and homozygosity in gynogenetic diploid Pacific abalone (<i><scp>H</scp>aliotis discus hannai</i>). Animal Genetics, 2014, 45, 453-455.	1.7	0
69	The complete mitochondrial genome of Mactra chinensis (Bivalvia: Macridae). Mitochondrial DNA Part B: Resources, 2021, 6, 2812-2815.	0.4	0
70	Gene Co-Expression Network Analysis Reveals the Correlation Patterns Among Genes in Different Temperature Stress Adaptation of Manila Clam. Marine Biotechnology, 2022, , .	2.4	0