
## Jaume Pérez-SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380955/publications.pdf

Version: 2024-02-01



| # | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Revising the Impact and Prospects of Activity and Ventilation Rate Bio-Loggers for Tracking Welfare<br>and Fish-Environment Interactions in Salmonids and Mediterranean Farmed Fish. Frontiers in Marine<br>Science, 2022, 9, . | 1.2 | 7         |
| 2 | Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea<br>Bream. Frontiers in Microbiology, 2022, 13, .                                                                             | 1.5 | 12        |
| 3 | SeqEditor: an application for primer design and sequence analysis with or without GTF/GFF files.<br>Bioinformatics, 2021, 37, 1610-1612.                                                                                        | 1.8 | 5         |

 $_{4}$  Effects of genetics and early-life mild hypoxia on size variation in farmed gilthead sea bream (Sparus) Tj ETQq0 0 0 rg BT /Overlock 10 Tf

| 5  | Health status in gilthead seabream (Sparus aurata) juveniles fed diets devoid of fishmeal and<br>supplemented with Phaeodactylum tricornutum. Journal of Applied Phycology, 2021, 33, 979-996.                                                          | 1.5 | 10 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 6  | The Effects of Nisin-Producing Lactococcus lactis Strain Used as Probiotic on Gilthead Sea Bream<br>(Sparus aurata) Growth, Gut Microbiota, and Transcriptional Response. Frontiers in Marine Science,<br>2021, 8, .                                    | 1.2 | 21 |
| 7  | Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream (Sparus aurata)<br>Immune Status. Animals, 2021, 11, 1193.                                                                                                           | 1.0 | 6  |
| 8  | The Use of Defatted Tenebrio molitor Larvae Meal as a Main Protein Source Is Supported in European<br>Sea Bass (Dicentrarchus labrax) by Data on Growth Performance, Lipid Metabolism, and Flesh Quality.<br>Frontiers in Physiology, 2021, 12, 659567. | 1.3 | 30 |
| 9  | The Effect of the Deformity Genetic Background of the Breeders on the Spawning Quality of Gilthead<br>Seabream (Sparus aurata L.). Frontiers in Marine Science, 2021, 8, .                                                                              | 1.2 | 8  |
| 10 | Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of<br>Gilthead Sea Bream (Sparus aurata) Juveniles. Biology, 2021, 10, 416.                                                                             | 1.3 | 8  |
| 11 | Use of accelerometer technology for individual tracking of activity patterns, metabolic rates and<br>welfare in farmed gilthead sea bream (Sparus aurata) facing a wide range of stressors. Aquaculture,<br>2021, 539, 736609.                          | 1.7 | 11 |
| 12 | Reshaping of Gut Microbiota in Gilthead Sea Bream Fed Microbial and Processed Animal Proteins as the<br>Main Dietary Protein Source. Frontiers in Marine Science, 2021, 8, .                                                                            | 1.2 | 18 |
| 13 | Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth. Aquaculture Reports, 2021, 20, 100645.                                      | 0.7 | 9  |
| 14 | Diet and Exercise Modulate GH-IGFs Axis, Proteolytic Markers and Myogenic Regulatory Factors in<br>Juveniles of Gilthead Sea Bream (Sparus aurata). Animals, 2021, 11, 2182.                                                                            | 1.0 | 7  |
| 15 | Transcriptomic profiling of Gh/lgf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Scientific Reports, 2021, 11, 16466.                                                             | 1.6 | 7  |
| 16 | A Novel Miniaturized Biosensor for Monitoring Atlantic Salmon Swimming Activity and Respiratory Frequency. Animals, 2021, 11, 2403.                                                                                                                     | 1.0 | 8  |
| 17 | Genetic parameters for Photobacterium damselae subsp. piscicida resistance, immunological markers and body weight in gilthead seabream (Sparus aurata). Aquaculture, 2021, 543, 736892.                                                                 | 1.7 | 5  |
| 18 | Effect of virgin low density polyethylene microplastic ingestion on intestinal histopathology and microbiota of gilthead sea bream. Aquaculture, 2021, 545, 737245.                                                                                     | 1.7 | 26 |

| #  | Article                                                                                                                                                                                                                                                                | IF                | CITATIONS             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| 19 | Reverse-Transcribing Viruses (Belpaoviridae, Metaviridae, and Pseudoviridae). , 2021, , 653-666.                                                                                                                                                                       |                   | ο                     |
| 20 | Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream (Sparus) Tj ETQq0 0<br>in Physiology, 2021, 12, 748265.                                                                                                                        | 0 rgBT /Ov<br>1.3 | verlock 10 Tf 5<br>26 |
| 21 | Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions<br>Between Bacteria and Host Lipid Metabolism. Frontiers in Marine Science, 2021, 8, .                                                                              | 1.2               | 9                     |
| 22 | Stearoyl-CoA desaturase (scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream (Sparus aurata). Epigenetics, 2020, 15, 536-553.                                                                                                             | 1.3               | 26                    |
| 23 | Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. Microbiome, 2020, 8, 168.                                                                                                  | 4.9               | 48                    |
| 24 | Physiological Effects of Water Flow Induced Swimming Exercise in Seabream Sparus aurata. Frontiers in Physiology, 2020, 11, 610049.                                                                                                                                    | 1.3               | 22                    |
| 25 | Long-term feeding of a maintenance ration affects the release of Igf-1 and leptin, and delays maturation in a male teleost fish, Dicentrarchus labrax L Aquaculture, 2020, 527, 735467.                                                                                | 1.7               | 9                     |
| 26 | From operculum and body tail movements to different coupling of physical activity and respiratory<br>frequency in farmed gilthead sea bream and European sea bass. Insights on aquaculture biosensing.<br>Computers and Electronics in Agriculture, 2020, 175, 105531. | 3.7               | 14                    |
| 27 | Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream (Sparus aurata). Frontiers in Zoology, 2020, 17, 15.                                                                                   | 0.9               | 9                     |
| 28 | No transfer of the non-regulated mycotoxins, beauvericin and enniatins, from feeds to farmed fish reared on plant-based diets. Food Chemistry, 2020, 323, 126773.                                                                                                      | 4.2               | 12                    |
| 29 | Tissue-Specific Orchestration of Gilthead Sea Bream Resilience to Hypoxia and High Stocking Density.<br>Frontiers in Physiology, 2019, 10, 840.                                                                                                                        | 1.3               | 47                    |
| 30 | Dietary tryptophan supplementation induces a transient immune enhancement of gilthead seabream<br>(Sparus aurata) juveniles fed fishmeal-free diets. Fish and Shellfish Immunology, 2019, 93, 240-250.                                                                 | 1.6               | 11                    |
| 31 | Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomics. Parasites and Vectors, 2019, 12, 486.                                                                                            | 1.0               | 24                    |
| 32 | Protective effects of seaweed supplemented diet on antioxidant and immune responses in European<br>seabass (Dicentrarchus labrax) subjected to bacterial infection. Scientific Reports, 2019, 9, 16134.                                                                | 1.6               | 34                    |
| 33 | Effects of diisononyl phthalate (DiNP) on the endocannabinoid and reproductive systems of male<br>gilthead sea bream (Sparus aurata) during the spawning season. Archives of Toxicology, 2019, 93,<br>727-741.                                                         | 1.9               | 20                    |
| 34 | Effects of Dietary Bisphenol A on the Reproductive Function of Gilthead Sea Bream (Sparus aurata)<br>Testes. International Journal of Molecular Sciences, 2019, 20, 5003.                                                                                              | 1.8               | 15                    |
| 35 | Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Frontiers in Physiology, 2019, 10, 667.                                                                                                                      | 1.3               | 32                    |
| 36 | Selection for growth is associated in gilthead sea bream (Sparus aurata) with diet flexibility, changes<br>in growth patterns and higher intestine plasticity. Aquaculture, 2019, 507, 349-360.                                                                        | 1.7               | 27                    |

## JAUME PéREZ-SÃiNCHEZ

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream<br>juveniles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology,<br>2019, 232, 67-78.                                                                         | 0.8 | 18        |
| 38 | Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis, immune and hypoxia related genes. BMC Genomics, 2019, 20, 200.                                                                      | 1.2 | 53        |
| 39 | Genome Sequencing and Transcriptome Analysis Reveal Recent Species-Specific Gene Duplications in<br>the Plastic Gilthead Sea Bream (Sparus aurata). Frontiers in Marine Science, 2019, 6, .                                                                                               | 1.2 | 26        |
| 40 | Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite<br>Fish. Frontiers in Microbiology, 2019, 10, 2512.                                                                                                                                     | 1.5 | 52        |
| 41 | Effects of Dietary Lipid Composition and Fatty Acid Desaturase 2 Expression in Broodstock Gilthead<br>Sea Bream on Lipid Metabolism-Related Genes and Methylation of the fads2 Gene Promoter in Their<br>Offspring. International Journal of Molecular Sciences, 2019, 20, 6250.          | 1.8 | 25        |
| 42 | Contributions of MS metabolomics to gilthead sea bream (Sparus aurata) nutrition. Serum fingerprinting of fish fed low fish meal and fish oil diets. Aquaculture, 2019, 498, 503-512.                                                                                                     | 1.7 | 50        |
| 43 | Impact of low fish meal and fish oil diets on the performance, sex steroid profile and male-female sex<br>reversal of gilthead sea bream (Sparus aurata) over a three-year production cycle. Aquaculture, 2018,<br>490, 64-74.                                                            | 1.7 | 67        |
| 44 | Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis<br>in fingerlings of gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2018,<br>257, 192-202.                                                                     | 0.8 | 36        |
| 45 | Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental<br>Factors in Growth Performance of Marine Farmed Fishes. Frontiers in Endocrinology, 2018, 9, 687.                                                                                       | 1.5 | 56        |
| 46 | Gene expression analysis of Atlantic salmon gills reveals mucin 5 and interleukin 4/13 as key molecules<br>during amoebic gill disease. Scientific Reports, 2018, 8, 13689.                                                                                                               | 1.6 | 53        |
| 47 | Impact of Diets Containing Plant Raw Materials as Fish Meal and Fish Oil Replacement on Rainbow<br>Trout <i> (Oncorhynchus mykiss)</i> , Gilthead Sea Bream <i> (Sparus aurata)</i> , and Common Carp <i><br/>(Cyprinus carpio)</i> Freshness. Journal of Food Quality, 2018, 2018, 1-14. | 1.4 | 13        |
| 48 | Comprehensive overview of feedâ€ŧoâ€fillet transfer of new and traditional contaminants in Atlantic<br>salmon and gilthead sea bream fed plantâ€based diets. Aquaculture Nutrition, 2018, 24, 1782-1795.                                                                                  | 1.1 | 18        |
| 49 | Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea<br>Bream (Sparus aurata) With Differences in Growth Performance. Frontiers in Physiology, 2018, 9, 608.                                                                                  | 1.3 | 47        |
| 50 | Chrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Frontiers in Endocrinology, 2018, 9, 399.                                                                                                                                                                        | 1.5 | 17        |
| 51 | Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of<br>T cell signature molecules depending on the organ and the infection status. Parasites and Vectors,<br>2018, 11, 443.                                                           | 1.0 | 47        |
| 52 | Dietary sodium heptanoate helps to improve feed efficiency, growth hormone status and swimming performance in gilthead sea bream ( <i>Sparus aurata</i> ). Aquaculture Nutrition, 2018, 24, 1638-1651.                                                                                    | 1.1 | 27        |
| 53 | Endocrine disruptors in the diet of male Sparus aurata: Modulation of the endocannabinoid system at the hepatic and central level by Di-isononyl phthalate and Bisphenol A. Environment International, 2018, 119, 54-65.                                                                  | 4.8 | 38        |
| 54 | Olive oil bioactive compounds increase body weight, and improve gut health and integrity in gilthead sea bream ( <i>Sparus aurata</i> ). British Journal of Nutrition, 2017, 117, 351-363.                                                                                                | 1.2 | 47        |

| #  | Article                                                                                                                                                                                                                                                  | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 55 | Dietary supplementation of heat-treated <i>Gracilaria</i> and <i>Ulva</i> seaweeds enhanced acute hypoxia tolerance in gilthead seabream ( <i>Sparus aurata</i> ). Biology Open, 2017, 6, 897-908.                                                       | 0.6               | 79                 |
| 56 | Multi-class determination of undesirables in aquaculture samples by gas chromatography/tandem<br>mass spectrometry with atmospheric pressure chemical ionization: A novel approach for polycyclic<br>aromatic hydrocarbons. Talanta, 2017, 172, 109-119. | 2.9               | 20                 |
| 57 | Comprehensive strategy for pesticide residue analysis through the production cycle of gilthead sea bream and Atlantic salmon. Chemosphere, 2017, 179, 242-253.                                                                                           | 4.2               | 35                 |
| 58 | The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Scientific Reports, 2017, 7, 12943.                                                                      | 1.6               | 54                 |
| 59 | Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus) Tj ETQq1 2017, 187, 153-163.                                                                                                                     | 1 0.784314<br>0.7 | rgBT /Overlo<br>39 |
| 60 | Skin Mucus of Gilthead Sea Bream (Sparus aurata L.). Protein Mapping and Regulation in Chronically<br>Stressed Fish. Frontiers in Physiology, 2017, 8, 34.                                                                                               | 1.3               | 67                 |
| 61 | Gene expression profiling of whole blood cells supports a more efficient mitochondrial respiration<br>in hypoxia-challenged gilthead sea bream (Sparus aurata). Frontiers in Zoology, 2017, 14, 34.                                                      | 0.9               | 72                 |
| 62 | Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 2017, 5, 164.                                                    | 4.9               | 186                |
| 63 | Untargeted metabolomics approach for unraveling robust biomarkers of nutritional status in fasted<br>gilthead sea bream (Sparus aurata). PeerJ, 2017, 5, e2920.                                                                                          | 0.9               | 26                 |
| 64 | Sodium salt medium-chain fatty acids and <i>Bacillus</i> -based probiotic strategies to improve growth<br>and intestinal health of gilthead sea bream ( <i>Sparus aurata</i> ). PeerJ, 2017, 5, e4001.                                                   | 0.9               | 54                 |
| 65 | Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a<br>Perciform Fish. Frontiers in Immunology, 2016, 7, 637.                                                                                           | 2.2               | 102                |
| 66 | Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme<br>Diets Low in Fish Meal and Fish Oil. PLoS ONE, 2016, 11, e0166564.                                                                            | 1.1               | 146                |
| 67 | Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Frontiers in Physiology, 2016, 7, 359.                                                                   | 1.3               | 42                 |
| 68 | Up-scaling validation of a dummy regression approach for predictive modelling the fillet fatty acid composition of cultured European sea bass (Dicentrarchus labrax). Aquaculture Research, 2016, 47, 1067-1074.                                         | 0.9               | 7                  |
| 69 | Wide-targeted gene expression infers tissue-specific molecular signatures of lipid metabolism in fed and fasted fish. Reviews in Fish Biology and Fisheries, 2016, 26, 93-108.                                                                           | 2.4               | 43                 |
| 70 | Effects of sustained exercise on GH-IGFs axis in gilthead sea bream ( <i>Sparus aurata</i> ). American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R313-R322.                                               | 0.9               | 32                 |
| 71 | Cimetidine disrupts the renewal of testicular cells and the steroidogenesis in a hermaphrodite fish.<br>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 189, 44-53.                                                 | 1.3               | 5                  |

Lasting effects of butyrate and low FM/FO diets on growth performance, blood haematology/biochemistry and molecular growth-related markers in gilthead sea bream (Sparus) Tj ETQq0 0 0 rgBT1/@verlocl@10 Tf 50 5 72

| #  | Article                                                                                                                                                                                                                                                                                            | IF                | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 73 | Immunity to gastrointestinal microparasites of fish. Developmental and Comparative Immunology, 2016, 64, 187-201.                                                                                                                                                                                  | 1.0               | 44                   |
| 74 | Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper-<br>and Hypo-Osmotic Challenges. PLoS ONE, 2016, 11, e0148113.                                                                                                                                 | 1.1               | 27                   |
| 75 | Comprehensive biometric, biochemical and histopathological assessment of nutrient deficiencies in gilthead sea bream fed semi-purified diets. British Journal of Nutrition, 2015, 114, 713-726.                                                                                                    | 1.2               | 43                   |
| 76 | Unraveling the Molecular Signatures of Oxidative Phosphorylation to Cope with the Nutritionally<br>Changing Metabolic Capabilities of Liver and Muscle Tissues in Farmed Fish. PLoS ONE, 2015, 10,<br>e0122889.                                                                                    | 1.1               | 66                   |
| 77 | European Sea Bass (Dicentrarchus labrax) Immune Status and Disease Resistance Are Impaired by Arginine Dietary Supplementation. PLoS ONE, 2015, 10, e0139967.                                                                                                                                      | 1.1               | 47                   |
| 78 | Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and<br>intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish and Shellfish<br>Immunology, 2015, 44, 117-128.                                                                        | 1.6               | 67                   |
| 79 | Occurrence and potential transfer of mycotoxins in gilthead sea bream and Atlantic salmon by use of novel alternative feed ingredients. Chemosphere, 2015, 128, 314-320.                                                                                                                           | 4.2               | 58                   |
| 80 | Growth-promoting effects of sustained swimming in fingerlings of gilthead sea bream (Sparus aurata) Tj ETQqO<br>185, 859-868.                                                                                                                                                                      | 0 0 rgBT /<br>0.7 | Overlock 10 Ti<br>43 |
| 81 | Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream, <i>Sparus aurata</i> . Chronobiology International, 2015, 32, 1061-1074.                                                                                                           | 0.9               | 47                   |
| 82 | Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata.<br>Aquaculture Environment Interactions, 2015, 7, 115-123.                                                                                                                                            | 0.7               | 47                   |
| 83 | Tissue-specific gene expression and functional regulation of uncoupling protein 2 (UCP2) by hypoxia<br>and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological<br>significance of UCP1–3 variants. Fish Physiology and Biochemistry, 2014, 40, 751-762. | 0.9               | 33                   |
| 84 | Interleukin gene expression is strongly modulated at the local level in a fish–parasite model. Fish and Shellfish Immunology, 2014, 37, 201-208.                                                                                                                                                   | 1.6               | 72                   |
| 85 | Screening of Pesticides and Polycyclic Aromatic Hydrocarbons in Feeds and Fish Tissues by Gas<br>Chromatography Coupled to High-Resolution Mass Spectrometry Using Atmospheric Pressure<br>Chemical Ionization. Journal of Agricultural and Food Chemistry, 2014, 62, 2165-2174.                   | 2.4               | 92                   |
| 86 | Acute stress response in gilthead sea bream ( <i>Sparus aurata</i> L.) is time-of-day dependent:<br>Physiological and oxidative stress indicators. Chronobiology International, 2014, 31, 1051-1061.                                                                                               | 0.9               | 34                   |
| 87 | Transcriptional Assessment by Microarray Analysis and Large-Scale Meta-analysis of the Metabolic<br>Capacity of Cardiac and Skeletal Muscle Tissues to Cope With Reduced Nutrient Availability in Gilthead<br>Sea Bream (Sparus aurata L.). Marine Biotechnology, 2014, 16, 423-435.               | 1.1               | 48                   |
| 88 | Metabolic and transcriptional responses of gilthead sea bream (Sparus aurata L.) to environmental<br>stress: New insights in fish mitochondrial phenotyping. General and Comparative Endocrinology, 2014,<br>205, 305-315.                                                                         | 0.8               | 95                   |
| 89 | Dummy regression analysis for modelling the nutritionally tailored fillet fatty acid composition of turbot and sole using gilthead sea bream as a reference subgroup category. Aquaculture Nutrition, 2014, 20, 421-430.                                                                           | 1.1               | 10                   |
| 90 | Wide-gene expression analysis of lipid-relevant genes in nutritionally challenged gilthead sea bream<br>(Sparus aurata). Gene, 2014, 547, 34-42.                                                                                                                                                   | 1.0               | 61                   |

| #   | Article                                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Deep sequencing for de novo construction of a marine fish (Sparus aurata)transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics, 2013, 14, 178.                                                                                                                                                    | 1.2 | 90        |
| 92  | Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 123-130. | 0.4 | 56        |
| 93  | Cloning and characterization of a plasminogen-binding enolase from the saliva of the argasid tick<br>Ornithodoros moubata. Veterinary Parasitology, 2013, 191, 301-314.                                                                                                                                                              | 0.7 | 41        |
| 94  | Can a parasitic infection modulate the expression of interleukin genes in a fish-myxozoan system?. Fish and Shellfish Immunology, 2013, 34, 1672.                                                                                                                                                                                    | 1.6 | 3         |
| 95  | Qualitative Screening of Undesirable Compounds from Feeds to Fish by Liquid Chromatography<br>Coupled to Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 2077-2087.                                                                                                                                         | 2.4 | 58        |
| 96  | Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression<br>patterns of lipid regulatory genes in gilthead sea bream ( <i>Sparus aurata</i> ). British Journal of<br>Nutrition, 2013, 109, 1175-1187.                                                                                     | 1.2 | 49        |
| 97  | Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and<br>Functional Analysis. PLoS ONE, 2013, 8, e65457.                                                                                                                                                                                      | 1.1 | 97        |
| 98  | Dietary Lipid Sources as a Means of Changing Fatty Acid Composition in Fish: Implications for Food Fortification. , 2013, , 41-54.                                                                                                                                                                                                   |     | 7         |
| 99  | Effect of nutrition and Enteromyxum leei infection on gilthead sea bream Sparus aurata intestinal carbohydrate distribution. Diseases of Aquatic Organisms, 2012, 100, 29-42.                                                                                                                                                        | 0.5 | 19        |
| 100 | Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional<br>background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish<br>and Shellfish Immunology, 2012, 33, 401-410.                                                                               | 1.6 | 56        |
| 101 | Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata),<br>but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics, 2012,<br>13, 470.                                                                                                               | 1.2 | 73        |
| 102 | Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant<br>protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture,<br>2011, 317, 146-154.                                                                                                   | 1.7 | 55        |
| 103 | Prediction of fillet fatty acid composition of market-size gilthead sea bream (Sparus aurata) using a<br>regression modelling approach. Aquaculture, 2011, 319, 81-88.                                                                                                                                                               | 1.7 | 21        |
| 104 | Molecular characterization and expression analysis of six peroxiredoxin paralogous genes in gilthead<br>sea bream (Sparus aurata): Insights from fish exposed to dietary, pathogen and confinement stressors.<br>Fish and Shellfish Immunology, 2011, 31, 294-302.                                                                   | 1.6 | 60        |
| 105 | Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquaculture Nutrition, 2011, 17, 54-63.                                                                                                                                | 1.1 | 47        |
| 106 | Plant oils' inclusion in high fish meal-substituted diets: effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.). Aquaculture Research, 2011, 42, 962-974.                                                                                                                                            | 0.9 | 34        |
| 107 | The nutritional background of the host alters the disease course in a fish–myxosporean system.<br>Veterinary Parasitology, 2011, 175, 141-150.                                                                                                                                                                                       | 0.7 | 46        |
| 108 | Molecular profiling of the gilthead sea bream (Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei. Molecular Immunology, 2011, 48, 2102-2112.                                                                                                                                               | 1.0 | 57        |

| #   | Article                                                                                                                                                                                                                                                                                                                          | IF                 | CITATIONS         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| 109 | Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses<br>induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.). Comparative<br>Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 158, 391-399.                             | 0.8                | 46                |
| 110 | Feed restriction up-regulates uncoupling protein 3 (UCP3) gene expression in heart and red muscle<br>tissues of gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology Part A,<br>Molecular & Integrative Physiology, 2011, 159, 296-302.                                                                | 0.8                | 24                |
| 111 | Modelling the predictable effects of dietary lipid sources on the fillet fatty acid composition of one-year-old gilthead sea bream (Sparus aurata L.). Food Chemistry, 2011, 124, 538-544.                                                                                                                                       | 4.2                | 39                |
| 112 | Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Gilthead Sea Bream (Sparus aurata L.)<br>Exposed to Long Term Feeding Trials with Different Experimental Diets. Archives of Environmental<br>Contamination and Toxicology, 2010, 59, 137-146.                                                                             | 2.1                | 34                |
| 113 | Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.). BMC Genomics, 2010, 11, 193.                                                                                                                                                | 1.2                | 92                |
| 114 | Gas chromatography–mass spectrometric determination of polybrominated diphenyl ethers in complex fatty matrices from aquaculture activities. Analytica Chimica Acta, 2010, 664, 190-198.                                                                                                                                         | 2.6                | 21                |
| 115 | Tissue-specific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.)<br>fed practical diets with a combined high replacement of fish meal and fish oil1. Journal of Animal<br>Science, 2010, 88, 1759-1770.                                                                                     | 0.2                | 66                |
| 116 | Gene expression survey of mitochondrial uncoupling proteins (UCP1/UCP3) in gilthead sea bream<br>(Sparus aurata L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental<br>Physiology, 2010, 180, 685-694.                                                                                            | 0.7                | 26                |
| 117 | Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus) Tj ETQq1 1 0.<br>& Integrative Physiology, 2009, 154, 197-203.                                                                                                                                                                 | 784314 rgBT<br>0.8 | /Overlock 1<br>85 |
| 118 | A reliable analytical approach based on gas chromatography coupled to triple quadrupole and<br>timeâ€ofâ€flight mass analyzers for the determination and confirmation of polycyclic aromatic<br>hydrocarbons in complex matrices from aquaculture activities. Rapid Communications in Mass<br>Spectrometry, 2009, 23, 2075-2086. | 0.7                | 30                |
| 119 | Natural abundance of <sup>15</sup> N and <sup>13</sup> C in fish tissues and the use of stable isotopes as dietary protein tracers in rainbow trout and gilthead sea bream. Aquaculture Nutrition, 2009, 15, 9-18.                                                                                                               | 1.1                | 32                |
| 120 | Dietary effects on insulin and glucagon plasma levels in rainbow trout ( <i>Oncorhynchus mykiss</i> )<br>and gilthead sea bream ( <i>Sparus aurata</i> ). Aquaculture Nutrition, 2009, 15, 166-176.                                                                                                                              | 1.1                | 6                 |
| 121 | Effects of fish oil replacement and re-feeding on the bioaccumulation of organochlorine compounds<br>in gilthead sea bream (Sparus aurata L.) of market size. Chemosphere, 2009, 76, 811-817.                                                                                                                                    | 4.2                | 23                |
| 122 | The time course of fish oil wash-out follows a simple dilution model in gilthead sea bream (Sparus) Tj ETQqO O C                                                                                                                                                                                                                 | ) rgBT /Overlo     | ock 10 Tf 50      |
| 123 | Assessment of the health and antioxidant trade-off in gilthead sea bream (Sparus aurata L.) fed alternative diets with low levels of contaminants. Aquaculture, 2009, 296, 87-95.                                                                                                                                                | 1.7                | 51                |
| 124 | Targets for TNFα-induced lipolysis in gilthead sea bream( <i>Sparus aurata</i> L.) adipocytes isolated from lean and fat juvenile fish. Journal of Experimental Biology, 2009, 212, 2254-2260.                                                                                                                                   | 0.8                | 40                |
| 125 | Time series analyses of sea bream (Sparus aurata L.) stress response after confinement exposure.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 151,<br>S41.                                                                                                                       | 0.8                | 1                 |
| 196 | Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in                                                                                                                                                                                                                               | 17                 |                   |

<sup>126</sup> response to dietary fish meal replacement by plant protein sources. Aquaculture, 2008, 282, 68-74.

## JAUME PéREZ-SÃiNCHEZ

| #   | Article                                                                                                                                                                                                                                                                                                   | IF                | CITATIONS           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 127 | Chronic exposure to the parasite Enteromyxum leei (Myxozoa: Myxosporea) modulates the immune response and the expression of growth, redox and immune relevant genes in gilthead sea bream, Sparus aurata L Fish and Shellfish Immunology, 2008, 24, 610-619.                                              | 1.6               | 74                  |
| 128 | Confinement exposure induces glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B)<br>in the hepatic tissue of gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology<br>- B Biochemistry and Molecular Biology, 2008, 149, 428-438.                                 | 0.7               | 24                  |
| 129 | High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream ( <i>Sparus) Tj ETQq1 1 0.784314<br/>tissues. British Journal of Nutrition, 2008, 100, 992-1003.</i>                                                                                                                  | rgBT /Ove<br>1.2  | erlock 10 Tf<br>166 |
| 130 | Co-expression of IGFs and GH receptors (GHRs) in gilthead sea bream (Sparus aurata L.): sequence analysis of the GHR-flanking region. Journal of Endocrinology, 2007, 194, 361-372.                                                                                                                       | 1.2               | 43                  |
| 131 | Conjugated Linoleic Acid Affects Lipid Composition, Metabolism, and Gene Expression in Gilthead Sea<br>Bream (Sparus aurata L)3. Journal of Nutrition, 2007, 137, 1363-1369.                                                                                                                              | 1.3               | 43                  |
| 132 | Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea<br>bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture,<br>2007, 267, 199-212.                                                                      | 1.7               | 147                 |
| 133 | Differential metabolic and gene expression profile of juvenile common dentex (Dentex dentex L.) and<br>gilthead sea bream (Sparus aurata L.) in relation to redox homeostasis. Aquaculture, 2007, 267, 213-224.                                                                                           | 1.7               | 32                  |
| 134 | Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture, 2007, 267, 188-198.                                                                                                                      | 1.7               | 49                  |
| 135 | Tumour necrosis factor (TNF)α as a regulator of fat tissue mass in the Mediterranean gilthead sea<br>bream (Sparus aurata L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular<br>Biology, 2007, 146, 338-345.                                                                     | 0.7               | 34                  |
| 136 | Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus) Tj ETQq0 0 0 rg<br>151-159.                                                                                                                                                                         | BT /Overlo<br>0.7 | ock 10 Tf 50<br>95  |
| 137 | Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on<br>growth and body/fillet quality traits. Aquaculture Nutrition, 2007, 13, 361-372.                                                                                                                 | 1.1               | 126                 |
| 138 | Bacteria associated with winter mortalities in laboratory-reared common dentex (Dentex dentex L.).<br>Aquaculture Research, 2007, 38, 733-739.                                                                                                                                                            | 0.9               | 16                  |
| 139 | Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2005, 142, 193-203.                                                                      | 0.8               | 126                 |
| 140 | Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss).<br>British Journal of Nutrition, 2005, 94, 353-361.                                                                                                                                                        | 1.2               | 50                  |
| 141 | Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata)<br>adipocytes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005,<br>289, R259-R265.                                                                                   | 0.9               | 65                  |
| 142 | Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional<br>regulation by season and nutritional condition in skeletal muscle and fat storage tissues.<br>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 142, 224-232. | 0.7               | 83                  |
| 143 | Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 2005, 249, 387-400.                                                                                                                  | 1.7               | 338                 |
| 144 | Production and characterization of recombinantly derived peptides and antibodies for accurate determinations of somatolactin, growth hormone and insulin-like growth factor-1 in European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology, 2004, 139, 266-277.                     | 0.8               | 47                  |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Nutritional assessment of somatolactin function in gilthead sea bream (Sparus aurata): concurrent changes in somatotropic axis and pancreatic hormones. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138, 533-542.                                                                                                                         | 0.8 | 57        |
| 146 | Genomic Structure and Functional Analysis of Promoter Region of Somatolactin Gene of Sea Bream<br>(Sparus aurata). Marine Biotechnology, 2004, 6, 411-418.                                                                                                                                                                                                                              | 1.1 | 8         |
| 147 | Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish<br>meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture, 2004,<br>232, 493-510.                                                                                                                                                                 | 1.7 | 369       |
| 148 | Expression and Characterization of European Sea Bass ( Dicentrarchus labrax ) Somatolactin:<br>Assessment of In Vivo Metabolic Effects. Marine Biotechnology, 2003, 5, 92-101.                                                                                                                                                                                                          | 1.1 | 46        |
| 149 | In vitro effect of leptin on somatolactin release in the European sea bass (Dicentrarchus labrax):<br>dependence on the reproductive status and interaction with NPY and GnRH. General and Comparative<br>Endocrinology, 2003, 132, 284-292.                                                                                                                                            | 0.8 | 43        |
| 150 | Isolation of Sparus auratus prolactin gene and activity of the cis-acting regulatory elements. General and Comparative Endocrinology, 2003, 134, 57-61.                                                                                                                                                                                                                                 | 0.8 | 16        |
| 151 | Immunological and pathological status of gilthead sea bream (Sparus aurata L.) under different<br>long-term feeding regimes. Aquaculture, 2003, 220, 707-724.                                                                                                                                                                                                                           | 1.7 | 27        |
| 152 | Effects of dietary amino acid profile on growth performance, key metabolic enzymes and<br>somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture, 2003, 220,<br>749-767.                                                                                                                                                                                   | 1.7 | 142       |
| 153 | Molecular cloning and characterization of gilthead sea bream (Sparus aurata) growth hormone<br>receptor (GHR). Assessment of alternative splicing. Comparative Biochemistry and Physiology - B<br>Biochemistry and Molecular Biology, 2003, 136, 1-13.                                                                                                                                  | 0.7 | 76        |
| 154 | Endocrine mediators of seasonal growth in gilthead sea bream (): the growth hormone and somatolactin paradigm. General and Comparative Endocrinology, 2002, 128, 102-111.                                                                                                                                                                                                               | 0.8 | 150       |
| 155 | Bacterial and parasitic pathogens in cultured common dentex, Dentex dentex L Journal of Fish<br>Diseases, 2002, 22, 299-309.                                                                                                                                                                                                                                                            | 0.9 | 65        |
| 156 | Overview of Fish Growth Hormone Family. New Insights in Genomic Organization and Heterogeneity of Growth Hormone Receptors. Fish Physiology and Biochemistry, 2002, 27, 243-258.                                                                                                                                                                                                        | 0.9 | 70        |
| 157 | Somatotropic regulation of fish growth and adiposity: growth hormone (GH) and somatolactin (SL) relationship. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2001, 130, 435-445.                                                                                                                                                                        | 1.3 | 55        |
| 158 | Pituitary and Interrenal Function in Gilthead Sea Bream (Sparus aurata L., Teleostei) after Handling and Confinement Stress. General and Comparative Endocrinology, 2001, 121, 333-342.                                                                                                                                                                                                 | 0.8 | 167       |
| 159 | Title is missing!. Fish Physiology and Biochemistry, 2000, 22, 135-144.                                                                                                                                                                                                                                                                                                                 | 0.9 | 114       |
| 160 | Title is missing!. Fish Physiology and Biochemistry, 2000, 23, 265-273.                                                                                                                                                                                                                                                                                                                 | 0.9 | 35        |
| 161 | Pituitary Proopiomelanocortin-Derived Peptides and Hypothalamusa Pituitarya Interrenal Axis Activity<br>in Gilthead Sea Bream (Sparus aurata) during Prolonged Crowding Stress: Differential Regulation of<br>Adrenocorticotropin Hormone and α-Melanocyte-Stimulating Hormone Release by<br>Corticotropin-Releasing Hormone and Thyrotropin-Releasing Hormone. General and Comparative | 0.8 | 97        |
| 162 | cDNA cloning and sequence of European sea bass (Dicentrarchus labrax) somatolactin. Comparative<br>Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 183-192.                                                                                                                                                                                              | 0.7 | 24        |

| #   | Article                                                                                                                                                                                                                                                          | IF        | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 163 | Protein sparing effect of dietary lipids in common dentex (): A comparative study with sea bream () and sea bass (). Aquatic Living Resources, 1999, 12, 23-30.                                                                                                  | 0.5       | 83             |
| 164 | Expression of growth hormone gene in the head kidney of gilthead sea bream (Sparus aurata). The<br>Journal of Experimental Zoology, 1999, 283, 326-330.                                                                                                          | 1.4       | 23             |
| 165 | Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high<br>energy diets. Aquaculture, 1999, 171, 279-292.                                                                                                             | 1.7       | 170            |
| 166 | Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture, 1999, 177, 117-128.                                                                                                                                             | 1.7       | 164            |
| 167 | SHORT COMMUNICATION Diet related changes in non-specific immune response of European sea bass (Dicentrarchus labrax L.). Fish and Shellfish Immunology, 1999, 9, 637-640.                                                                                        | 1.6       | 39             |
| 168 | Release of Glycosylated and Non-Glycosylated Forms of Somatolactin by Fish Pituitary Culture in<br>Vitro. Annals of the New York Academy of Sciences, 1998, 839, 478-479.                                                                                        | 1.8       | 7              |
| 169 | Modulation of the respiratory burst activity of Mediterranean sea bass (Dicentrarchus labraxL.)<br>phagocytes by growth hormone and parasitic status. Fish and Shellfish Immunology, 1998, 8, 25-36.                                                             | 1.6       | 36             |
| 170 | Recombinant somatolactin as a stable and bioactive protein in a cell culture bioassay: development<br>and validation of a sensitive and reproducible radioimmunoassay. Journal of Endocrinology, 1998, 156,<br>441-447.                                          | 1.2       | 34             |
| 171 | Growth hormone as an in vitro phagocyte-activating factor in the gilthead sea bream ( Sparus aurata) Tj ETQq1 2                                                                                                                                                  | l 0.78431 | 4 rgBT /Overle |
| 172 | Evidence for a direct action of GH on haemopoietic cells of a marine fish, the gilthead sea bream<br>(Sparus aurata). Journal of Endocrinology, 1995, 146, 459-467.                                                                                              | 1.2       | 62             |
| 173 | The use of recombinant gilthead sea bream (Sparus aurata) growth hormone for radioiodination and standard preparation in radioimmunoassay. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 335-340.                                | 0.7       | 48             |
| 174 | Seasonal changes in circulating growth hormone (GH), hepatic GH-binding and plasma insulin-like<br>growth factor-l immunoreactivity in a marine fish, gilthead sea bream,Sparus aurata. Fish Physiology<br>and Biochemistry, 1994, 13, 199-208.                  | 0.9       | 59             |
| 175 | Cloning, Expression, and Characterization of a Recombinant Gilthead Seabream Growth Hormone.<br>General and Comparative Endocrinology, 1994, 96, 179-188.                                                                                                        | 0.8       | 30             |
| 176 | Homologous growth hormone (GH) binding in gilthead sea bream (Sparus aurata). Effect of fasting<br>and refeeding on hepatic GH-binding and plasma somatomedin-like immunoreactivity. Journal of Fish<br>Biology, 1994, 44, 287-301.                              | 0.7       | 57             |
| 177 | Cloning of the sole (Solea senegalensis) growth hormone-encoding cDNA. Gene, 1994, 145, 237-240.                                                                                                                                                                 | 1.0       | 17             |
| 178 | Development of a protein binding assay for teleost insulin-like growth factor (IGF)-like: relationships<br>between growth hormone (GH) and IGF-like in the blood of rainbow trout (Oncorhynchus mykiss).<br>Fish Physiology and Biochemistry, 1993, 11, 381-391. | 0.9       | 69             |
| 179 | Effects of human insulin-like growth factor-I on release of growth hormone by rainbow trout<br>(Oncorhynchus mykiss) pituitary cells. The Journal of Experimental Zoology, 1992, 262, 287-290.                                                                   | 1.4       | 87             |
| 180 | Changes in plasma glucagon and insulin associated with fasting in sea bass (Dicentrarchus labrax).<br>Fish Physiology and Biochemistry, 1991, 9, 107-112.                                                                                                        | 0.9       | 54             |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Effect of bonito insulin injection on plasma immunoreactive glucagon levels and carbohydrate and<br>lipid metabolism of sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology A,<br>Comparative Physiology, 1989, 94, 33-36. | 0.7 | 14        |
| 182 | Effects of diet and feeding time on daily variations in plasma insulin, hepatic c-AMP and other<br>metabolites in a teleost fish,Dicentrarchus labrax L Fish Physiology and Biochemistry, 1988, 5, 191-197.                                     | 0.9 | 29        |
| 183 | Fish Growth Hormone Receptor: Molecular Characterization of Two Membrane-Anchored Forms. , 0, .                                                                                                                                                 |     | 33        |