
Charles Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis. Science, 2007, 317, 807-810.	12.6	1,321
2	Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development (Cambridge), 2011, 138, 3657-3666.	2.5	531
3	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
4	FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature, 2016, 529, 216-220.	27.8	438
5	NF-κBââ,¬â€œmediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. Journal of Clinical Investigation, 2013, 123, 4821-4835.	8.2	293
6	Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes and Development, 2004, 18, 2614-2626.	5.9	277
7	Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration. Cell Stem Cell, 2010, 6, 117-129.	11.1	275
8	Constitutive Notch Activation Upregulates Pax7 and Promotes the Self-Renewal of Skeletal Muscle Satellite Cells. Molecular and Cellular Biology, 2012, 32, 2300-2311.	2.3	216
9	Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes and Development, 2004, 18, 2608-2613.	5.9	208
10	Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Science Translational Medicine, 2016, 8, 366ra163.	12.4	168
11	Evidence for an Unanticipated Relationship between Undifferentiated Pleomorphic Sarcoma and Embryonal Rhabdomyosarcoma. Cancer Cell, 2011, 19, 177-191.	16.8	167
12	Virtual Histology of Transgenic Mouse Embryos for High-Throughput Phenotyping. PLoS Genetics, 2006, 2, e61.	3.5	153
13	Biomarker system for studying muscle, stem cells, and cancer <i>in vivo</i> . FASEB Journal, 2009, 23, 2681-2690.	0.5	125
14	Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5349-5354.	7.1	124
15	Focal Adhesion Kinase Signaling Regulates the Expression of Caveolin 3 and β1 Integrin, Genes Essential for Normal Myoblast Fusion. Molecular Biology of the Cell, 2009, 20, 3422-3435.	2.1	114
16	BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Developmental Biology, 2009, 335, 93-105.	2.0	97
17	Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS Journal, 2013, 280, 4323-4334.	4.7	97
18	Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes and Development, 2014, 28, 1578-1591.	5.9	87

#	Article	IF	CITATIONS
19	Tbx22 null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Human Molecular Genetics, 2009, 18, 4171-4179.	2.9	84
20	PDGFR-A is a therapeutic target in alveolar rhabdomyosarcoma. Oncogene, 2008, 27, 6550-6560.	5.9	80
21	miR-29 Acts as a Decoy in Sarcomas to Protect the Tumor Suppressor A20 mRNA from Degradation by HuR. Science Signaling, 2013, 6, ra63.	3.6	79
22	Credentialing a Preclinical Mouse Model of Alveolar Rhabdomyosarcoma. Cancer Research, 2009, 69, 2902-2911.	0.9	74
23	Purinergic Receptor Stimulation Reduces Cytotoxic Edema and Brain Infarcts in Mouse Induced by Photothrombosis by Energizing Glial Mitochondria. PLoS ONE, 2010, 5, e14401.	2.5	64
24	Myf5 expression during fetal myogenesis defines the developmental progenitors of adult satellite cells. Developmental Biology, 2013, 379, 195-207.	2.0	64
25	Rhabdomyosarcoma: Current Challenges and Their Implications for Developing Therapies. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a025650-a025650.	6.2	60
26	Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatric Blood and Cancer, 2019, 66, e27869.	1.5	57
27	Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: A report from the children's oncology group. Pediatric Blood and Cancer, 2006, 46, 329-338.	1.5	54
28	The NOTCH1/SNAIL1/MEF2C Pathway Regulates Growth and Self-Renewal in Embryonal Rhabdomyosarcoma. Cell Reports, 2017, 19, 2304-2318.	6.4	53
29	IL-4R Drives Dedifferentiation, Mitogenesis, and Metastasis in Rhabdomyosarcoma. Clinical Cancer Research, 2011, 17, 2757-2766.	7.0	52
30	Evasion Mechanisms to Igf1r Inhibition in Rhabdomyosarcoma. Molecular Cancer Therapeutics, 2011, 10, 697-707.	4.1	52
31	The HDAC3–SMARCA4–miR-27a axis promotes expression of the <i>PAX3:FOXO1</i> fusion oncogene in rhabdomyosarcoma. Science Signaling, 2018, 11, .	3.6	51
32	New Genetic Tactics to Model Alveolar Rhabdomyosarcoma in the Mouse. Cancer Research, 2005, 65, 7530-7532.	0.9	50
33	A Postnatal Pax7+ Progenitor Gives Rise to Pituitary Adenomas. Genes and Cancer, 2010, 1, 388-402.	1.9	48
34	Pax7 Expressing Cells Contribute to Dermal Wound Repair, Regulating Scar Size through a β-Catenin Mediated Process. Stem Cells, 2011, 29, 1371-1379.	3.2	44
35	Low-Grade Myofibrosarcoma of the Head and Neck: Importance of Surgical Therapy. Journal of Pediatric Hematology/Oncology, 2004, 26, 119-120.	0.6	42
36	Immune Competency of a <i>Hairless</i> Mouse Strain for Improved Preclinical Studies in Genetically Engineered Mice. Molecular Cancer Therapeutics, 2010, 9, 2354-2364.	4.1	40

#	Article	IF	CITATIONS
37	<i>MyoD</i> Gene Suppression by Oct4 Is Required for Reprogramming in Myoblasts to Produce Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 505-516.	3.2	40
38	CCAAT/Enhancer Binding Protein Beta is Expressed in Satellite Cells and Controls Myogenesis. Stem Cells, 2012, 30, 2619-2630.	3.2	40
39	A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. BMC Bioinformatics, 2013, 14, 239.	2.6	40
40	High-Throughput Detection of Glutathione S-Transferase Polymorphic Alleles in a Pediatric Cancer Population. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 304-313.	2.5	39
41	Cell-Cycle Dependent Expression of a Translocation-Mediated Fusion Oncogene Mediates Checkpoint Adaptation in Rhabdomyosarcoma. PLoS Genetics, 2014, 10, e1004107.	3.5	38
42	Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Laboratory Investigation, 2015, 95, 585-602.	3.7	37
43	Rb1 Gene Inactivation Expands Satellite Cell and Postnatal Myoblast Pools. Journal of Biological Chemistry, 2011, 286, 19556-19564.	3.4	36
44	Brief Report: Blockade of Notch Signaling in Muscle Stem Cells Causes Muscular Dystrophic Phenotype and Impaired Muscle Regeneration. Stem Cells, 2013, 31, 823-828.	3.2	36
45	Refinement of a morphological scoring system for postimplantation rabbit conceptuses. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2007, 80, 213-222.	1.4	35
46	Cross-Species Array Comparative Genomic Hybridization Identifies Novel Oncogenic Events in Zebrafish and Human Embryonal Rhabdomyosarcoma. PLoS Genetics, 2013, 9, e1003727.	3.5	34
47	Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy. Frontiers in Oncology, 2015, 5, 186.	2.8	34
48	PDGFRβ reverses EphB4 signaling in alveolar rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6383-6388.	7.1	33
49	Practical Vessel Imaging by Computed Tomography in Live Transgenic Mouse Models for Human Tumors. Molecular Imaging, 2005, 4, 7290.2005.05166.	1.4	31
50	Bortezomib stabilizes NOXA and triggers ROS-associated apoptosis in medulloblastoma. Journal of Neuro-Oncology, 2011, 105, 475-483.	2.9	31
51	Near-Infrared Imaging of Injured Tissue in Living Subjects Using IR-820. Molecular Imaging, 2009, 8, 7290.2009.00005.	1.4	30
52	Bortezomib reverses a postâ€ŧranslational mechanism of tumorigenesis for <i>patched1</i> haploinsufficiency in medulloblastoma. Pediatric Blood and Cancer, 2009, 53, 136-144.	1.5	30
53	Overcoming autopsy barriers in pediatric cancer research. Pediatric Blood and Cancer, 2013, 60, 204-209.	1.5	30
54	Dynamic and Nuclear Expression of PDGFRα and IGF-1R in Alveolar Rhabdomyosarcoma. Molecular Cancer Research, 2013, 11, 1303-1313.	3.4	29

#	Article	IF	CITATIONS
55	IGF-1 receptor inhibition by picropodophyllin in medulloblastoma. Biochemical and Biophysical Research Communications, 2010, 399, 727-732.	2.1	28
56	Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene, 2013, 32, 286-295.	5.9	27
57	Small Molecule Inhibition of PAX3-FOXO1 through AKT Activation Suppresses Malignant Phenotypes of Alveolar Rhabdomyosarcoma. Molecular Cancer Therapeutics, 2013, 12, 2663-2674.	4.1	26
58	Optimization of Volumetric Computed Tomography for Skeletal Analysis of Model Genetic Organisms. Anatomical Record, 2008, 291, 475-487.	1.4	25
59	Thermal Windows on Brazilian Free-tailed Bats Facilitate Thermoregulation during Prolonged Flight. Integrative and Comparative Biology, 2010, 50, 358-370.	2.0	25
60	An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 995-1008.	3.0	24
61	AKT and PAX3-FKHR cooperation enforces myogenic differentiation blockade in alveolar rhabdomyosarcoma cell. Cell Cycle, 2012, 11, 895-908.	2.6	23
62	Microscopic Computed Tomography–Based Virtual Histology for Visualization and Morphometry of Atherosclerosis in Diabetic Apolipoprotein E Mutant Mice. Circulation, 2009, 120, 821-822.	1.6	22
63	Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget, 2019, 10, 6403-6417.	1.8	22
64	Developmental Origins of Fusion-Negative Rhabdomyosarcomas. Current Topics in Developmental Biology, 2011, 96, 33-56.	2.2	21
65	A case study of personalized therapy for osteosarcoma. Pediatric Blood and Cancer, 2013, 60, 1313-1319.	1.5	21
66	IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma. Scientific Reports, 2016, 6, 27012.	3.3	21
67	Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers, 2020, 12, 1478.	3.7	21
68	CIITA is silenced by epigenetic mechanisms that prevent the recruitment of transactivating factors in rhabdomyosarcoma cells. International Journal of Cancer, 2012, 131, E437-48.	5.1	18
69	The clinical, research, and social value of autopsy after any cancer death. Cancer, 2012, 118, 3002-3009.	4.1	18
70	IL-4 receptor blockade abrogates satellite cell: Rhabdomyosarcoma fusion and prevents tumor establishment. Stem Cells, 2013, 31, 2304-2312.	3.2	18
71	Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. ELife, 2017, 6, .	6.0	18
72	Preclinical testing of the glycogen synthase kinase-3β inhibitor tideglusib for rhabdomyosarcoma. Oncotarget, 2017, 8, 62976-62983.	1.8	18

#	Article	IF	CITATIONS
73	IL-13 receptors as possible therapeutic targets in diffuse intrinsic pontine glioma. PLoS ONE, 2018, 13, e0193565.	2.5	18
74	<i>MDM2</i> Amplification and <i>PI3KCA</i> Mutation in a Case of Sclerosing Rhabdomyosarcoma. Sarcoma, 2013, 2013, 1-8.	1.3	17
75	Preclinical rationale for entinostat in embryonal rhabdomyosarcoma. Skeletal Muscle, 2019, 9, 12.	4.2	17
76	A Patient-Derived Xenograft Model of Parameningeal Embryonal Rhabdomyosarcoma for Preclinical Studies. Sarcoma, 2015, 2015, 1-7.	1.3	16
77	Practical vessel imaging by computed tomography in live transgenic mouse models for human tumors. Molecular Imaging, 2005, 4, 417-24.	1.4	15
78	MicroCT-Based Virtual Histology Evaluation of Preclinical Medulloblastoma. Molecular Imaging and Biology, 2011, 13, 493-499.	2.6	14
79	An adaptive Src–PDGFRA–Raf axis in rhabdomyosarcoma. Biochemical and Biophysical Research Communications, 2012, 426, 363-368.	2.1	14
80	Contrast Enhanced Vessel Imaging using MicroCT. Journal of Visualized Experiments, 2011, , .	0.3	13
81	Probabilistic modeling of personalized drug combinations from integrated chemical screen and molecular data in sarcoma. BMC Cancer, 2019, 19, 593.	2.6	13
82	Design considerations of an IL13Rα2 antibody–drug conjugate for diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2021, 9, 88.	5.2	13
83	Functional evaluation of therapeutic response for a mouse model of medulloblastoma. Transgenic Research, 2010, 19, 829-840.	2.4	12
84	Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species. Oncotarget, 2017, 8, 76241-76256.	1.8	12
85	Combination therapy design for maximizing sensitivity and minimizing toxicity. BMC Bioinformatics, 2017, 18, 116.	2.6	11
86	Prioritization of Novel Agents for Patients with Rhabdomyosarcoma: A Report from the Children's Oncology Group (COG) New Agents for Rhabdomyosarcoma Task Force. Journal of Clinical Medicine, 2021, 10, 1416.	2.4	11
87	Utilizing -score to identify oncogenic pathways of cholangiocarcinoma. Translational Cancer Research, 2013, 2, 6-17.	1.0	11
88	Near-infrared imaging of injured tissue in living subjects using IR-820. Molecular Imaging, 2009, 8, 45-54.	1.4	11
89	YAPping About Differentiation Therapy in Muscle Cancer. Cancer Cell, 2014, 26, 154-155.	16.8	10
90	Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Frontiers in Oncology, 2016, 6, 259.	2.8	10

#	Article	IF	CITATIONS
91	Preclinical Testing of Erlotinib in a Transgenic Alveolar Rhabdomyosarcoma Mouse Model. Sarcoma, 2011, 2011, 1-5.	1.3	9
92	¹⁸ Fâ€FDG microPET imaging detects early transient response to an IGF1R inhibitor in genetically engineered rhabdomyosarcoma models. Pediatric Blood and Cancer, 2012, 59, 485-492.	1.5	9
93	Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma. Skeletal Muscle, 2013, 3, 27.	4.2	9
94	Exogenous expression of the glycosyltransferase LARGE1 restores \hat{I}_{\pm} -dystroglycan matriglycan and laminin binding in rhabdomyosarcoma. Skeletal Muscle, 2019, 9, 11.	4.2	9
95	Undifferentiated small round cell sarcoma in a young male: a case report. Journal of Physical Education and Sports Management, 2020, 6, a004812.	1.2	9
96	Defining an embryonal rhabdomyosarcoma endotype. Journal of Physical Education and Sports Management, 2020, 6, a005066.	1.2	9
97	Defining the Extracellular Matrix of Rhabdomyosarcoma. Frontiers in Oncology, 2021, 11, 601957.	2.8	9
98	EphB4/EphrinB2 therapeutics in Rhabdomyosarcoma. PLoS ONE, 2017, 12, e0183161.	2.5	9
99	Machine learning for rhabdomyosarcoma histopathology. Modern Pathology, 2022, 35, 1193-1203.	5.5	9
100	Inference of dynamic biological networks based on responses to drug perturbations. Eurasip Journal on Bioinformatics and Systems Biology, 2014, 2014, 14.	1.4	8
101	DISSEMINATED MYCOBACTERIUM AVIUM COMPLEX PRESENTING AS HEMATOCHEZIA IN AN INFANT WITH RAPIDLY PROGRESSIVE ACQUIRED IMMUNODEFICIENCY SYNDROME. Pediatric Infectious Disease Journal, 1996, 15, 713-715.	2.0	8
102	The Case for Primary Salivary Rhabdomyosarcoma. Frontiers in Oncology, 2015, 5, 74.	2.8	7
103	In vitro benchmarking of NF-κB inhibitors. European Journal of Pharmacology, 2020, 873, 172981.	3.5	7
104	Metastatic pediatric sclerosing epithelioid fibrosarcoma. Journal of Physical Education and Sports Management, 2021, 7, a006093.	1.2	7
105	Translational inhibition of messenger RNA of the human π class glutathione S-transferase by antisense oligodeoxyribonucleotides. Chemico-Biological Interactions, 1998, 111-112, 307-323.	4.0	6
106	ADVL1513: Results of a phase 1 trial of entinostat, an oral histone deacetylase inhibitor, in pediatric patients with recurrent or refractory solid tumors Journal of Clinical Oncology, 2018, 36, 10556-10556.	1.6	6
107	Bromodomain 4 inhibition leads to <i>MYCN</i> downregulation in Wilms tumor. Pediatric Blood and Cancer, 2022, 69, e29401.	1.5	6
108	Preclinical therapeutics ex ovo quail eggs as a biomimetic automation-ready xenograft platform. Scientific Reports, 2021, 11, 23302.	3.3	6

#	Article	IF	CITATIONS
109	SMARCA4 biology in alveolar rhabdomyosarcoma. Oncogene, 2022, 41, 1647-1656.	5.9	6
110	Functional genomic analysis of epithelioid sarcoma reveals distinct proximal and distal subtype biology. Clinical and Translational Medicine, 2022, 12, .	4.0	6
111	Craniorachischisis and omphalocele in a stillborn cynomolgus monkey (<i>Macaca fascicularis</i>). American Journal of Medical Genetics, Part A, 2011, 155, 1367-1373.	1.2	5
112	Preclinical Testing of Tandutinib in a Transgenic Medulloblastoma Mouse Model. Journal of Pediatric Hematology/Oncology, 2012, 34, 116-121.	0.6	5
113	Severe runting in a laboratory mouse (Mus musculus). Lab Animal, 2007, 36, 19-19.	0.4	4
114	The Not-so-Skinny on Muscle Cancer. Cancer Cell, 2012, 22, 421-422.	16.8	4
115	Secreted meningeal chemokines, but not VEGFA, modulate the migratory properties of medulloblastoma cells. Biochemical and Biophysical Research Communications, 2014, 450, 555-560.	2.1	4
116	NFκB signaling in alveolar rhabdomyosarcoma. DMM Disease Models and Mechanisms, 2017, 10, 1109-1115.	2.4	4
117	Deep Functional and Molecular Characterization of a High-Risk Undifferentiated Pleomorphic Sarcoma. Sarcoma, 2020, 2020, 1-11.	1.3	4
118	Negative correlation of single-cell <i>PAX3:FOXO1</i> expression with tumorigenicity in rhabdomyosarcoma. Life Science Alliance, 2021, 4, e202001002.	2.8	4
119	Multimodality Chamber for coregistered anatomical and molecular imaging of small animals. Lab Animal, 2007, 36, 29-35.	0.4	3
120	Crimson carrier, A longâ€acting contrast agent for in vivo nearâ€infrared imaging of injured and diseased muscle. Muscle and Nerve, 2010, 42, 245-251.	2.2	3
121	Analyzing pathway design from drug perturbation experiments. , 2012, , .		3
122	Personalized cancer care: Opportunities and challenges in pediatric neuroâ€oncology. Pediatric Blood and Cancer, 2012, 59, 1-2.	1.5	3
123	Shape analysis of the basioccipital bone in Pax7-deficient mice. Scientific Reports, 2017, 7, 17955.	3.3	3
124	The long road to immunotherapy for childhood rhabdomyosarcoma. Pediatric Blood and Cancer, 2011, 57, 899-901.	1.5	2
125	Vascular Contrast Enhanced Microâ€CT Imaging of "Radiators―in the Brazilian Freeâ€Tailed Bat (<i>Tadarida Brasiliensis</i>). Anatomical Record, 2012, 295, 563-566.	1.4	2
126	MURC/cavin-4 ls Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE, 2015, 10, e0130287.	2.5	2

#	Article	IF	CITATIONS
127	BT-02 * FUNCTIONALLY-DEFINED THERAPEUTIC TARGETS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2015, 17, iii3-iii3.	1.2	2
128	Case report for an adolescent with germline RET mutation and alveolar rhabdomyosarcoma. Journal of Physical Education and Sports Management, 2020, 6, a004853.	1.2	2
129	Receptor-driven invasion profiles in diffuse intrinsic pontine glioma. Neuro-Oncology Advances, 2021, 3, vdab039.	0.7	2
130	Refractory alveolar rhabdomyosarcoma in an 11-year-old male. Journal of Physical Education and Sports Management, 2021, 7, a005983.	1.2	2
131	Integrin-linked kinase: both Jekyll and Hyde in rhabdomyosarcoma. Journal of Clinical Investigation, 2009, 119, 1452-5.	8.2	2
132	Plexin-B2 and Semaphorins Do Not Drive Rhabdomyosarcoma Proliferation or Migration. Sarcoma, 2022, 2022, 1-12.	1.3	2
133	Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1. Biochemical and Biophysical Research Communications, 2022, 621, 101-108.	2.1	2
134	Renal Stem Cell Biology Starts to Take Spherical Shape Commentary on: Lusis et al., Isolation of clonogenic, long-term self renewing embryonic renal stem cells. Stem Cell Research, 2010, 5, 1-3.	0.7	1
135	S-score: A novel scoring method of gene signatures for molecular classification. , 2011, , .		1
136	Interleukin-4 Receptor Inhibition Targeting Metastasis Independent of Macrophages. Molecular Cancer Therapeutics, 2021, 20, 906-914.	4.1	1
137	Scientific visualization in small animal imaging. Computer Graphics, 2004, 38, 4-7.	0.1	1
138	Vascular Contrast Enhanced Micro-CT Imaging of "Radiators―in the Brazilian Free-Tailed Bat (Tadarida) Tj ET	⁻ Qq0,00r	gBT /Overloch
139	Microscopic Computed Tomography-Based Skeletal Phenotyping for Genetic Model Organisms. Methods in Molecular Biology, 2014, 1092, 221-226.	0.9	0

140	Functional impact of a germline RET mutation in alveolar rhabdomyosarcoma. Journal of Physical Education and Sports Management, 2021, 7, a006049.	1.2	0
141	Experimental Models. Pediatric Oncology, 2021, , 129-147.	0.5	0