Julia Skibina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380722/publications.pdf Version: 2024-02-01

IIIIIA SKIRINA

3.6

10

#	Article	IF	CITATIONS
1	SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth. Biosensors, 2022, 12, 19.	4.7	2
2	Microstructured optical fibers sensor modified by deep eutectic solvent: Liquid-phase microextraction and detection in one analytical device. Talanta, 2021, 232, 122305.	5.5	9
3	Noncontact characterization of microstructured optical fibers coating in real time. Optics Letters, 2021, 46, 4793.	3.3	1
4	Ultrasmooth, biocompatible, and removable nanocoating for hollow-core microstructured optical fibers. Optics Letters, 2021, 46, 4828.	3.3	1
5	Soft glass multi-channel capillaries as a platform for bioimprinting. Talanta, 2020, 208, 120445.	5.5	7
6	Multispectral sensing of biological liquids with hollow-core microstructured optical fibres. Light: Science and Applications, 2020, 9, 173.	16.6	32
7	Numerical investigation of gold metasurface based broadband near-infrared and near-visible solar absorber. Physica B: Condensed Matter, 2020, 591, 412248.	2.7	32
8	Functionalized Microstructured Optical Fibers: Materials, Methods, Applications. Materials, 2020, 13, 921.	2.9	15
9	Light guidance up to 6.5â€Âµm in borosilicate soft glass hollow-core microstructured optical waveguides. Optics Express, 2020, 28, 27940.	3.4	10
10	Đ~Đ·Đ¼ĐµÑ€ĐµĐ½Đ,е Đ¾Đ;Ň,Đ,҇еÑĐºĐ,Ň ŇĐ²Đ¾Đ¹ÑŇ,Đ² Đ′еÑĐ½Ñ‹ Đ, Đ ĐµĐ½Ñ,Đ,Đ½Đ° ҇еĐ	տ Յն% քвÐլ	uÐ9авÑÐ
11	Simultaneous determination of proteins in microstructured optical fibers supported by chemometric tools. Analytical and Bioanalytical Chemistry, 2019, 411, 7055-7059.	3.7	2
12	Giant Nonlinear AlGaAs-Doped Glass Photonic Crystal Fibers for Efficient Soliton Generation at Femtojoule Energy. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	15
13	Microstructured Optical Waveguide-Based Endoscopic Probe Coated with Silica Submicron Particles. Materials, 2019, 12, 1424.	2.9	10
14	Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. Optics Express, 2019, 27, 9868.	3.4	13
15	Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel? - A review. Analytica Chimica Acta, 2018, 1019, 14-24.	5.4	31
16	Microstructured Waveguides with Polyelectrolyte-Stabilized Gold Nanostars for SERS Sensing of Dissolved Analytes. Materials, 2018, 11, 734.	2.9	6
17	Layer-by-layer polyelectrolyte coating for surface-enhanced Raman scattering on gold nanostars inside hollow core photonic crystal fibers. , 2018, , .		0

18	The red shift of the semiconductor quantum dots luminescence maximum in the hollow core
	photonic crystal fibers. Optical Materials, 2017, 73, 423-427.

Julia Skibina

#	Article	IF	CITATIONS
19	Control of Adsorption Horseradish Peroxidase on the Surface of Glass Multicapillary by Using a Polyelectrolyte on Layer-by-Layer Technology. Nanotechnologies in Russia, 2017, 12, 480-484.	0.7	1
20	Controlled chemical modification of the internal surface of photonic crystal fibers for application as biosensitive elements. Optical Materials, 2016, 60, 283-289.	3.6	9
21	Characterization of nanographitized activated porous carbons. Nanotechnologies in Russia, 2016, 11, 791-800.	0.7	1
22	Microstructured waveguides for express analysis of water, coffee, tea, wine, and spirit. , 2015, , .		0
23	Blood typing using microstructured waveguide smart cuvette. Journal of Biomedical Optics, 2015, 20, 040503.	2.6	9
24	Characterization and application of chirped photonic crystal fiber in multiphoton imaging. Optics Express, 2014, 22, 10366.	3.4	11
25	Entering the mid-infrared. Nature Photonics, 2014, 8, 814-815.	31.4	26
26	A study on the application of chirped photonic crystal fiber in multiphoton microscopy. Proceedings of SPIE, 2013, , .	0.8	0
27	Determination of glucose concentration in biological liquids using photonic crystal waveguides. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 115, 228-232.	0.6	1
28	Nanostructured fibers for sub-10 fs optical pulse delivery. Laser and Photonics Reviews, 2013, 7, 566-570.	8.7	5
29	Photonic Crystal Waveguide Sensing. Series in Sensors, 2013, , 1-32.	0.0	4
30	10-fs pulse delivery through a fiber. , 2012, , .		0
31	Hollow fiber for flexible sub-20-fs pulse delivery. Optics Letters, 2011, 36, 442.	3.3	8
32	Photonic crystal fibers in biophotonics. Proceedings of SPIE, 2011, , .	0.8	0
33	Photonic crystal fibres in biomedical investigations. Quantum Electronics, 2011, 41, 284-301.	1.0	45
34	Determination of blood types using a chirped photonic crystal fiber. Proceedings of SPIE, 2011, , .	0.8	6
35	The use of hollow-core photonic crystal fibres as biological sensors. Quantum Electronics, 2011, 41, 302-307.	1.0	22
36	Photonic crystal fibers in biophotonics. , 2011, , .		0

Photonic crystal fibers in biophotonics. , 2011, , . 36

Julia Skibina

#	Article	IF	CITATIONS
37	Photonic fiber for flexible sub-20-fs pulse delivery. , 2010, , .		0
38	Biological sensor based on a hollow-core photonic crystal fiber. Technical Physics Letters, 2010, 36, 362-364.	0.7	6
39	A chirped photonic crystal fiber for ultrashort laser pulse delivery. , 2009, , .		0
40	A chirped photonic crystal fiber for high-fidelity guiding of sub-100 fs pluses , 2009, , .		0
41	Micro- and nanocapillary glass technology for optical biosensing. SPIE Newsroom, 2009, , .	0.1	0
42	A chirped photonic-crystal fibre. Nature Photonics, 2008, 2, 679-683.	31.4	70
43	<title>Photonic crystal fiber with hollow-core for biosensing application</title> ., 2007, , .		1
44	<title>Microstructured materials for biological and medical application</title> ., 2006, , .		0
45	Optical transmission of hollow glass photonic-crystal fibers. Technical Physics Letters, 2005, 31, 1019-1021.	0.7	1
46	Supercontinuum generation in a two-dimensional photonic kagome crystal. Applied Physics B: Lasers and Optics, 2005, 81, 209-217.	2.2	12
47	Investigation of supercontinuum generation in a two-dimensional photonic kagome crystal. , 2005, , .		1
48	Spatial and spectral characteristics of two-dimensional photon-fiber crystals. Technical Physics Letters, 2002, 28, 272-274.	0.7	0
49	Optical characteristics of 2D air-glass and metal-glass photonic superlattice crystals. , 0, , .		0
50	Glass and metal-glass holey fibers with high quality hexagonal structure. , 0, , .		0