Anthony Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/838005/publications.pdf

Version: 2024-02-01

30 papers 3,572 citations

394286 19 h-index 454834 30 g-index

38 all docs 38 docs citations

38 times ranked 6394 citing authors

#	Article	IF	CITATIONS
1	T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe, The, 2022, 3, e21-e31.	3.4	131
2	Divergent trajectories of antiviral memory after SARS-CoV-2 infection. Nature Communications, 2022, 13, 1251.	5.8	20
3	Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight, 2022, 7, .	2.3	26
4	Impaired humoral and cellular response to primary <scp>COVID</scp> â€19 vaccination in patients less than 2 years after allogeneic bone marrow transplant. British Journal of Haematology, 2022, 198, 668-679.	1.2	13
5	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	5.8	102
6	Real world SOF/VEL/VOX retreatment outcomes and viral resistance analysis for HCV patients with prior failure to DAA therapy. Journal of Viral Hepatitis, 2021, 28, 1256-1264.	1.0	16
7	Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus. Nature Communications, 2021, 12, 5125.	5.8	16
8	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial. Lancet HIV, the, 2021, 8, e474-e485.	2.1	190
9	Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nature Communications, 2021, 12, 5061.	5.8	150
10	Specific human cytomegalovirus signature detected in NK cell metabolic changes post vaccination. Npj Vaccines, 2021, 6, 117.	2.9	3
11	Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell, 2021, 184, 5699-5714.e11.	13.5	262
12	A Comprehensive Genomics Solution for HIV Surveillance and Clinical Monitoring in Low-Income Settings. Journal of Clinical Microbiology, 2020, 58, .	1.8	39
13	Simultaneous Viral Whole-Genome Sequencing and Differential Expression Profiling in Respiratory Syncytial Virus Infection of Infants. Journal of Infectious Diseases, 2020, 222, S666-S671.	1.9	11
14	Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. Npj Vaccines, 2020, 5, 94.	2.9	15
15	Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes. Vaccine, 2020, 38, 5036-5048.	1.7	13
16	MHC class II invariant chain–adjuvanted viral vectored vaccines enhances T cell responses in humans. Science Translational Medicine, 2020, 12, .	5.8	20
17	Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Scientific Reports, 2019, 9, 7081.	1.6	75
18	Resistance analysis of genotype 3 hepatitis C virus indicates subtypes inherently resistant to nonstructural protein 5A inhibitors. Hepatology, 2019, 69, 1861-1872.	3.6	68

#	Article	IF	CITATIONS
19	The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine, 2018, 36, 313-321.	1.7	32
20	Characterization of hepatitis C virus resistance to grazoprevir reveals complex patterns of mutations following on-treatment breakthrough that are not observed at relapse. Infection and Drug Resistance, 2018, Volume 11, 1119-1135.	1.1	6
21	A Novel Vaccine Strategy Employing Serologically Different Chimpanzee Adenoviral Vectors for the Prevention of HIV-1 and HCV Coinfection. Frontiers in Immunology, 2018, 9, 3175.	2.2	27
22	Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of antiâ€MicroRNAâ€122, RGâ€101. Hepatology, 2017, 66, 57-68.	3.6	39
23	Immune responses in DAA treated chronic hepatitis C patients with and without prior RG-101 dosing. Antiviral Research, 2017 , 146 , $139-145$.	1.9	14
24	Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection. Vaccines, 2016, 4, 27.	2.1	35
25	Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes. Journal of Clinical Microbiology, 2016, 54, 2470-2484.	1.8	112
26	Chronic hepatitis C viral infection subverts vaccineâ€induced Tâ€eell immunity in humans. Hepatology, 2016, 63, 1455-1470.	3.6	43
27	Global distribution and prevalence of hepatitis C virus genotypes. Hepatology, 2015, 61, 77-87.	3.6	1,293
28	ve-SEQ: Robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens. F1000Research, 2015, 4, 1062.	0.8	66
29	A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Science Translational Medicine, 2014, 6, 261ra153.	5.8	297
30	Novel Adenovirus-Based Vaccines Induce Broad and Sustained T Cell Responses to HCV in Man. Science Translational Medicine, 2012, 4, 115ra1.	5.8	356