Junling Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8380015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A colloidal quantum dot infrared photodetector and its use for intraband detection. Nature Communications, 2019, 10, 2125.	5.8	155
2	Halide Ligands To Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness. ACS Nano, 2019, 13, 5326-5334.	7.3	71
3	Intraband Mid-Infrared Transitions in Ag ₂ Se Nanocrystals: Potential and Limitations for Hg-Free Low-Cost Photodetection. Journal of Physical Chemistry C, 2018, 122, 18161-18167.	1.5	59
4	HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array. ACS Applied Materials & Interfaces, 2019, 11, 33116-33123.	4.0	53
5	HgTe Nanocrystal Inks for Extended Shortâ€Wave Infrared Detection. Advanced Optical Materials, 2019, 7, 1900348.	3.6	52
6	Short Wave Infrared Devices Based on HgTe Nanocrystals with Air Stable Performances. Journal of Physical Chemistry C, 2018, 122, 14979-14985.	1.5	49
7	Near Unity Absorption in Nanocrystal Based Short Wave Infrared Photodetectors Using Guided Mode Resonators. ACS Photonics, 2019, 6, 2553-2561.	3.2	44
8	Complex Optical Index of HgTe Nanocrystal Infrared Thin Films and Its Use for Short Wave Infrared Photodiode Design. Advanced Optical Materials, 2021, 9, 2002066.	3.6	36
9	The Strong Confinement Regime in HgTe Two-Dimensional Nanoplatelets. Journal of Physical Chemistry C, 2020, 124, 23460-23468.	1.5	29
10	Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. Nano Letters, 2020, 20, 6185-6190.	4.5	28
11	Emergence of intraband transitions in colloidal nanocrystals [Invited]. Optical Materials Express, 2018, 8, 1174.	1.6	27
12	Electroluminescence from nanocrystals above 2 µm. Nature Photonics, 2022, 16, 38-44.	15.6	25
13	Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals. ACS Applied Materials & Interfaces, 2018, 10, 11880-11887.	4.0	23
14	Field-Effect Transistor and Photo-Transistor of Narrow-Band-Gap Nanocrystal Arrays Using Ionic Glasses. Nano Letters, 2019, 19, 3981-3986.	4.5	23
15	Nanoplatelet-Based Light-Emitting Diode and Its Use in All-Nanocrystal LiFi-like Communication. ACS Applied Materials & Interfaces, 2020, 12, 22058-22065.	4.0	23
16	Ferroelectric Gating of Narrow Band-Gap Nanocrystal Arrays with Enhanced Light–Matter Coupling. ACS Photonics, 2021, 8, 259-268.	3.2	23
17	Correlating Structure and Detection Properties in HgTe Nanocrystal Films. Nano Letters, 2021, 21, 4145-4151.	4.5	23
18	Transport in ITO Nanocrystals with Short- to Long-Wave Infrared Absorption for Heavy-Metal-Free Infrared Photodetection. ACS Applied Nano Materials, 2019, 2, 1621-1630.	2.4	19

Junling Qu

#	Article	IF	CITATIONS
19	Impact of dimensionality and confinement on the electronic properties of mercury chalcogenide nanocrystals. Nanoscale, 2019, 11, 3905-3915.	2.8	18
20	Effect of Pressure on Interband and Intraband Transition of Mercury Chalcogenide Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 13122-13130.	1.5	18
21	Pushing Absorption of Perovskite Nanocrystals into the Infrared. Nano Letters, 2020, 20, 3999-4006.	4.5	18
22	Seeded Growth of HgTe Nanocrystals for Shape Control and Their Use in Narrow Infrared Electroluminescence. Chemistry of Materials, 2021, 33, 2054-2061.	3.2	16
23	Optimized Infrared LED and Its Use in an Allâ€HgTe Nanocrystalâ€Based Active Imaging Setup. Advanced Optical Materials, 2022, 10, .	3.6	16
24	Near- to Long-Wave-Infrared Mercury Chalcogenide Nanocrystals from Liquid Mercury. Journal of Physical Chemistry C, 2020, 124, 8423-8430.	1.5	14
25	Potential of Colloidal Quantum Dot Based Solar Cells for Near-Infrared Active Detection. ACS Photonics, 2020, 7, 272-278.	3.2	13
26	Time-Resolved Photoemission to Unveil Electronic Coupling between Absorbing and Transport Layers in a Quantum Dot-Based Solar Cell. Journal of Physical Chemistry C, 2020, 124, 23400-23409.	1.5	12
27	Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission. Journal of Physical Chemistry C, 2020, 124, 3873-3880.	1.5	10
28	Azobenzenes as Light-Activable Carrier Density Switches in Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 27257-27263.	1.5	3