Elmar Wahle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8379987/publications.pdf Version: 2024-02-01

Ειμαρ \λ/αμιε

#	Article	IF	CITATIONS
1	A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell, 1991, 66, 759-768.	13.5	301
2	Structure and function of poly(A) binding proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1678, 67-84.	2.4	266
3	RNA decay machines: Deadenylation by the Ccr4–Not and Pan2–Pan3 complexes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 561-570.	0.9	203
4	Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. Genes and Development, 2014, 28, 2381-2393.	2.7	201
5	A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO Journal, 2004, 23, 2862-2871.	3.5	188
6	Poly(A) Tail Length Control Is Caused by Termination of Processive Synthesis. Journal of Biological Chemistry, 1995, 270, 2800-2808.	1.6	169
7	Poly(A) Tail Length Is Controlled by the Nuclear Poly(A)-binding Protein Regulating the Interaction between Poly(A) Polymerase and the Cleavage and Polyadenylation Specificity Factor. Journal of Biological Chemistry, 2009, 284, 22803-22814.	1.6	157
8	Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO Journal, 2003, 22, 3705-3714.	3.5	132
9	Unusual Sites of Arginine Methylation in Poly(A)-binding Protein II and in Vitro Methylation by Protein Arginine Methyltransferases PRMT1 and PRMT3. Journal of Biological Chemistry, 1999, 274, 13229-13234.	1.6	131
10	Immunodetection of Poly(A) Binding Protein II in the Cell Nucleus. Experimental Cell Research, 1994, 214, 75-82.	1.2	123
11	Deciphering the mRNP Code: RNA-Bound Determinants of Post-Transcriptional Gene Regulation. Trends in Biochemical Sciences, 2017, 42, 369-382.	3.7	115
12	Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucleic Acids Research, 1995, 23, 4034-4041.	6.5	92
13	Deciphering the cellular pathway for transport of poly(A)-binding protein II. Rna, 2000, 6, 245-256.	1.6	91
14	An Essential Cytoplasmic Function for the Nuclear Poly(A) Binding Protein, PABP2, in Poly(A) Tail Length Control and Early Development in Drosophila. Developmental Cell, 2005, 9, 511-522.	3.1	91
15	Deadenylation of mRNA by the CCR4ââ,¬â€œNOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics, 2014, 5, 143.	1.1	81
16	Smaug assembles an ATP-dependent stable complex repressing <i>nanos</i> mRNA translation at multiple levels. EMBO Journal, 2011, 30, 90-103.	3.5	73
17	The RNA Binding Domains of the Nuclear poly(A)-binding Protein. Journal of Biological Chemistry, 2003, 278, 16916-16925.	1.6	70
18	Translational repression of the <i>Drosophila nanos</i> mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch. Rna, 2017, 23, 1552-1568.	1.6	66

Elmar Wahle

#	Article	IF	CITATIONS
19	Rapid ATP-dependent Deadenylation of nanos mRNA in a Cell-free System from Drosophila Embryos. Journal of Biological Chemistry, 2006, 281, 25124-25133.	1.6	47
20	Degradation of hsp70 and Other mRNAs in Drosophila via the 5′–3′ Pathway and Its Regulation by Heat Shock. Journal of Biological Chemistry, 2007, 282, 21818-21828.	1.6	42
21	Reconstitution of mammalian cleavage factor II involved in 3′ processing of mRNA precursors. Rna, 2018, 24, 1721-1737.	1.6	36
22	Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Reports, 2020, 31, 107783.	2.9	35
23	The Saccharomyces cerevisiae RNA-binding Protein Rbp29 Functions in Cytoplasmic mRNA Metabolism. Journal of Biological Chemistry, 2000, 275, 21817-21826.	1.6	33
24	The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation. Rna, 2017, 23, 473-482.	1.6	32
25	Reconstitution of 3′ end processing of mammalian pre-mRNA reveals a central role of RBBP6. Genes and Development, 2022, 36, 195-209.	2.7	26
26	Mitochondrial poly(A) polymerase is involved in tRNA repair. Nucleic Acids Research, 2015, 43, gkv891.	6.5	17
27	Oligoadenylation of 3′ decay intermediates promotes cytoplasmic mRNA degradation in <i>Drosophila</i> cells. Rna, 2016, 22, 428-442.	1.6	12
28	Chapter 6 Cellâ€Free Deadenylation Assays with Drosophila Embryo Extracts. Methods in Enzymology, 2008, 448, 107-118.	0.4	11
29	Activity and Function of Deadenylases. The Enzymes, 2012, 31, 181-211.	0.7	5
30	Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases – how and why. Biological Chemistry, 2013, 394, 1029-1043.	1.2	4
31	Establishment of 5′–3′ interactions in mRNA independent of a continuous ribose-phosphate backbone. Rna, 2020, 26, 613-628.	1.6	2