Ihtasham Ur Rehman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8379335/publications.pdf

Version: 2024-02-01

81743 46693 8,517 112 39 89 citations g-index h-index papers 118 118 118 11742 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and wound healing performance of new <scp>waterâ€soluble</scp> chitosan derivatives. Journal of Applied Polymer Science, 2022, 139, 51770.	1.3	1
2	Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 13.	1.8	19
3	Ceramic Stereolithography of Bioactive Glasses: Influence of Resin Composition on Curing Behavior and Green Body Properties. Biomedicines, 2022, 10, 395.	1.4	9
4	Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. International Journal of Molecular Sciences, 2022, 23, 5370.	1.8	23
5	A study of the comparative effect of cerium oxide and cerium peroxide on stimulation of angiogenesis: Design and synthesis of proâ€angiogenic chitosan/collagen hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2751-2762.	1.6	1
6	Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opinion on Drug Delivery, 2021, 18, 1-24.	2.4	40
7	A simple and efficient method to prepare exfoliated and reduced graphene nanosheets by vacuum oven. Journal of Materials Research, 2021, 36, 3031-3040.	1.2	O
8	Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 2021, 56, 733-763.	3.4	46
9	Elucidating the chemical and structural composition of breast cancer using Raman micro-spectroscopy. EXCLI Journal, 2021, 20, 1118-1132.	0.5	5
10	Boron for tissue regeneration-it's loading into chitosan/collagen hydrogels and testing on chorioallantoic membrane to study the effect on angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 525-534.	1.8	19
11	Raman spectroscopy of breast cancer. Applied Spectroscopy Reviews, 2020, 55, 439-475.	3.4	36
12	Fabrication of dual drug loaded bilayered chitosan based composite scaffolds as osteochondral substitutes and evaluation of in vitro cell response using the MC3T3 pre-osteoblast cell line. Cellulose, 2020, 27, 2253-2266.	2.4	3
13	Thyroxine-loaded chitosan/carboxymethyl cellulose/hydroxyapatite hydrogels enhance angiogenesis in in-ovo experiments. International Journal of Biological Macromolecules, 2020, 145, 1162-1170.	3.6	27
14	Heparinized chitosan/hydroxyapatite scaffolds stimulate angiogenesis. Functional Composite Materials, 2020, $1,\ldots$	0.9	9
15	Spectroscopy as a tool for detection and monitoring of Coronavirus (COVID-19). Expert Review of Molecular Diagnostics, 2020, 20, 647-649.	1.5	42
16	Role of artificial intelligence and vibrational spectroscopy in cancer diagnostics. Expert Review of Molecular Diagnostics, 2020, 20, 749-755.	1.5	11
17	Synthesis and characterization of cellulose/hydroxyapatite based dental restorative composites. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1806-1819.	1.9	19
18	<p>Oxygen Generating Polymeric Nano Fibers That Stimulate Angiogenesis and Show Efficient Wound Healing in a Diabetic Wound Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 3511-3522.	3.3	48

#	Article	IF	CITATIONS
19	In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications. International Journal of Molecular Sciences, 2020, 21, 1633.	1.8	33
20	Thyroxine impregnated chitosan-based dressings stimulate angiogenesis and support fast wounds healing in rats: Potential clinical candidates. International Journal of Biological Macromolecules, 2020, 160, 296-306.	3.6	16
21	Bioresorbable antibacterial PCLâ€PLAâ€nHA composite membranes for oral and maxillofacial defects. Polymer Composites, 2019, 40, 1564-1575.	2.3	27
22	Spectroscopic techniques as potential screening tools for preterm birth: A review and an exploratory study. Applied Spectroscopy Reviews, 2019, 54, 348-367.	3.4	1
23	Development of collagen/PVA composites patches for osteochondral defects using a green processing of ionic liquid. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 590-596.	1.8	16
24	Amino acids loaded chitosan/collagen based new membranes stimulate angiogenesis in chorioallantoic membrane assay. International Journal of Biological Macromolecules, 2019, 140, 401-406.	3.6	24
25	Addition of 2-deoxy- <scp>d</scp> -ribose to clinically used alginate dressings stimulates angiogenesis and accelerates wound healing in diabetic rats. Journal of Biomaterials Applications, 2019, 34, 463-475.	1.2	20
26	Advancing cancer diagnostics with artificial intelligence and spectroscopy: identifying chemical changes associated with breast cancer. Expert Review of Molecular Diagnostics, 2019, 19, 929-940.	1.5	24
27	Sterilization effects on the handling and degradation properties of calcium phosphate cements containing poly (_{D,L} â€lacticâ€coâ€glycolic acid) porogens and carboxymethyl cellulose. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2216-2228.	1.6	16
28	Tri-layered functionally graded membrane for potential application in periodontal regeneration. Materials Science and Engineering C, 2019, 103, 109812.	3.8	27
29	Incorporation of nanoparticles in glass ionomer cements: Clinical applications, properties, and future perspectives., 2019,, 113-138.		0
30	Bi-layered \hat{l}_{\pm} -tocopherol acetate loaded membranes for potential wound healing and skin regeneration. Materials Science and Engineering C, 2019, 101, 438-447.	3.8	38
31	Surface-grafted remedial hydroxyapatite nanoparticles to avoid operational infections. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 605-615.	0.9	3
32	Characterisation of structural changes in collagen with Raman spectroscopy. Applied Spectroscopy Reviews, 2019, 54, 509-542.	3.4	49
33	Fabrication, in vitro and in vivo studies of bilayer composite membrane for periodontal guided tissue regeneration. Journal of Biomaterials Applications, 2019, 33, 967-978.	1.2	13
34	Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. International Materials Reviews, 2019, 64, 91-126.	9.4	133
35	Incidence and management of cleft lip and palate in Pakistan. JPMA the Journal of the Pakistan Medical Association, 2019, 69, 632-639.	0.1	1
36	Study of wettability and cell viability of H implanted stainless steel. Materials Research Express, 2018, 5, 036509.	0.8	3

#	Article	IF	Citations
37	FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, 2018, 53, 703-746.	3.4	314
38	Application of Nanomaterials in Dentistry. , 2018, , 319-336.		7
39	Identification of anti-cancer potential of doxazocin: Loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Materials Science and Engineering C, 2018, 82, 102-109.	3.8	37
40	Role of Salivary Biomarkers in Oral Cancer Detection. Advances in Clinical Chemistry, 2018, 86, 23-70.	1.8	161
41	Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences, 2018, 19, 407.	1.8	236
42	Development of K-doped ZnO nanoparticles encapsulated crosslinked chitosan based new membranes to stimulate angiogenesis in tissue engineered skin grafts. International Journal of Biological Macromolecules, 2018, 120, 721-728.	3.6	31
43	Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi Journal of Biological Sciences, 2017, 24, 787-796.	1.8	50
44	Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. Journal of Molecular Liquids, 2017, 232, 258-264.	2.3	54
45	Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application. Materials Science and Engineering C, 2017, 80, 387-396.	3.8	56
46	Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing. Materials Science and Engineering C, 2017, 74, 347-356.	3.8	28
47	An application of ionic liquid for preparation of homogeneous collagen and alginate hydrogels for skin dressing. Journal of Molecular Liquids, 2017, 243, 720-725.	2.3	43
48	Analyzing normal proliferating, hypoxic and necrotic regions of T-47D human breast cancer spheroids using Raman spectroscopy. Applied Spectroscopy Reviews, 2017, 52, 909-924.	3.4	14
49	The use of vibrational spectroscopy to study the pathogenesis multiple sclerosis and other neurological conditions. Applied Spectroscopy Reviews, 2017, 52, 868-882.	3.4	9
50	Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Materials and Design, 2017, 133, 416-425.	3.3	39
51	Mapping Nanostructural Variations in Silk by Secondary Electron Hyperspectral Imaging. Advanced Materials, 2017, 29, 1703510.	11.1	20
52	Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dental Materials, 2017, 33, 71-83.	1.6	114
53	Raman spectroscopy can discriminate between normal, dysplastic and cancerous oral mucosa: a tissue-engineering approach. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3253-3262.	1.3	22
54	Vibrational spectroscopy of selective dental restorative materials. Applied Spectroscopy Reviews, 2017, 52, 507-540.	3.4	83

#	Article	IF	Citations
55	In- vitro and in -vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polymer Degradation and Stability, 2017, 136, 31-38.	2.7	74
56	Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 2017, 52, 456-506.	3.4	319
57	Advances of Proteomic Sciences in Dentistry. International Journal of Molecular Sciences, 2016, 17, 728.	1.8	49
58	Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics. International Journal of Molecular Sciences, 2016, 17, 1134.	1.8	118
59	Biological behavior of bioactive glasses and their composites. RSC Advances, 2016, 6, 70197-70214.	1.7	26
60	Triethyl orthoformate covalently cross-linked chitosan-(poly vinyl) alcohol based biodegradable scaffolds with heparin-binding ability for promoting neovascularisation. Journal of Biomaterials Applications, 2016, 31, 582-593.	1.2	21
61	A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituricand thiobarbituric acid based chitosan derivatives for biomedical applications. Materials Science and Engineering C, 2016, 66, 156-163.	3.8	32
62	Effect of calcium hydroxide on mechanical strength and biological properties of bioactive glass. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 617-626.	1.5	32
63	Low-Temperature Synthesis and Surface Modification of High Surface Area Calcium Hydroxyapatite Nanorods Incorporating Organofunctionalized Surfaces. Journal of Physical Chemistry C, 2016, 120, 29069-29076.	1.5	23
64	Efficient drug delivery system for bone repair by tuning the surface of hydroxyapatite particles. RSC Advances, 2016, 6, 104969-104978.	1.7	20
65	Applications of Raman spectroscopy in dentistry part II: Soft tissue analysis. Applied Spectroscopy Reviews, 2016, 51, 799-821.	3.4	3
66	Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Materials Science and Engineering C, 2016, 68, 267-275.	3.8	34
67	Dental materials for cleft palate repair. Materials Science and Engineering C, 2016, 61, 1018-1028.	3.8	31
68	Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Materials Science and Engineering C, 2016, 64, 148-156.	3.8	46
69	Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 466-476.	1.8	48
70	Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models. Applied Spectroscopy Reviews, 2016, 51, 263-277.	3.4	11
71	Raman spectroscopic analysis differentiates between breast cancer cell lines. Journal of Raman Spectroscopy, 2015, 46, 421-427.	1.2	68
72	Effect of Beverages on Viscoelastic Properties of Resin-Based Dental Composites. Materials, 2015, 8, 2863-2872.	1.3	4

#	Article	IF	Citations
73	Structural, Surface, in vitro Bacterial Adhesion and Biofilm Formation Analysis of Three Dental Restorative Composites. Materials, 2015, 8, 3221-3237.	1.3	25
74	Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure. Applied Spectroscopy Reviews, 2015, 50, 332-350.	3.4	100
75	Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 2015, 23, 317-328.	4.1	95
76	Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Materials Science and Engineering C, 2015, 56, 104-113.	3.8	53
77	Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Materials Science and Engineering C, 2015, 56, 154-164.	3.8	46
78	A comparative finite elemental analysis of glass abutment supported and unsupported cantilever fixed partial denture. Dental Materials, 2015, 31, 514-521.	1.6	4
79	Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid. Pharmaceutical Development and Technology, 2015, 20, 352-360.	1.1	6
80	Auxetic polyurethane stents and stent-grafts for the palliative treatment of squamous cell carcinomas of the proximal and mid oesophagus: A novel fabrication route. Journal of Manufacturing Systems, 2015, 37, 375-395.	7.6	27
81	A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. Journal of Materials Science, 2015, 50, 1794-1804.	1.7	29
82	An update on glass fiber dental restorative composites: A systematic review. Materials Science and Engineering C, 2015, 47, 26-39.	3.8	78
83	Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2015, 50, 46-111.	3.4	491
84	(Hydroxypropyl)methylcellulose Mediated Synthesis of Highly Porous Composite Scaffolds for Trabecular Bone Repair Applications. Science of Advanced Materials, 2015, 7, 1177-1186.	0.1	13
85	Auxetic oesophageal stents: structure and mechanical properties. Journal of Materials Science: Materials in Medicine, 2014, 25, 527-553.	1.7	139
86	Development of a Dewaxing Protocol for Tissue-Engineered Models of the Oral Mucosa Used for Raman Spectroscopic Analysis. Applied Spectroscopy Reviews, 2014, 49, 614-617.	3.4	24
87	Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites. Surface and Coatings Technology, 2014, 258, 458-466.	2.2	59
88	Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 95-110.	1.5	145
89	Preparation and characterization of bioactive composites and fibers for dental applications. Dental Materials, 2014, 30, e253-e263.	1.6	16
90	Structural, mechanical, and biocompatibility analyses of a novel dental restorative nanocomposite. Journal of Applied Polymer Science, 2013, 127, 439-447.	1.3	17

#	Article	IF	CITATIONS
91	Studies on Tolfenamic Acid–Chitosan Intermolecular Interactions: Effect of pH, Polymer Concentration and Molecular Weight. AAPS PharmSciTech, 2013, 14, 870-879.	1.5	19
92	Raman Spectroscopy of Natural Bone and Synthetic Apatites. Applied Spectroscopy Reviews, 2013, 48, 329-355.	3.4	99
93	A comparison of the mechanical properties of a modified silorane based dental composite with those of commercially available composite material. Dental Materials, 2013, 29, e53-e59.	1.6	24
94	Synthesis and characterizations of a fluoride-releasing dental restorative material. Materials Science and Engineering C, 2013, 33, 3458-3464.	3.8	26
95	Development and Characterization of Novel Polyurethane Films Impregnated with Tolfenamic Acid for Therapeutic Applications. BioMed Research International, 2013, 2013, 1-8.	0.9	13
96	Raman Spectroscopy Can Detect and Monitor Cancer at Cellular Level: Analysis of Resistant and Sensitive Subtypes of Testicular Cancer Cell Lines. Applied Spectroscopy Reviews, 2012, 47, 571-581.	3.4	19
97	Structural and <i>in vitro</i> adhesion analysis of a novel covalently coupled bioactive composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 239-248.	1.6	11
98	An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. Journal of Materials Science: Materials in Medicine, 2011, 22, 2573-2581.	1.7	94
99	Fourier Transform Infrared Spectroscopic Analysis of Breast Cancer Tissues; Identifying Differences between Normal Breast, Invasive Ductal Carcinoma, and Ductal Carcinoma In Situ of the Breast. Applied Spectroscopy Reviews, 2010, 45, 355-368.	3.4	46
100	Synthesis and characterisation of enhanced barrier polyurethane for encapsulation of implantable medical devices. Journal of Materials Science: Materials in Medicine, 2009, 20, 1803-1814.	1.7	32
101	Characterization and drug release investigation of amorphous drug–hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 1112-1119.	1.4	30
102	Preparation and characterization of a novel bioactive restorative composite based on covalently coupled polyurethane–nanohydroxyapatite fibres. Acta Biomaterialia, 2008, 4, 1275-1287.	4.1	93
103	Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental Materials, 2008, 24, 1381-1390.	1.6	142
104	Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2008, 43, 134-179.	3.4	1,241
105	Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood, 2008, 112, 3835-3846.	0.6	83
106	Synthesis and <l>ln-Vitro</l> Analysis of Degradative Resistance of a Novel Bioactive Composite. Journal of Bionanoscience, 2008, 2, 75-88.	0.4	10
107	Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2007, 42, 493-541.	3.4	1,857
108	Raman spectroscopic analysis of breast cancer tissues: identifying differences between normal, invasive ductal carcinoma and ductal carcinoma <i>in situ</i> of the breast tissue. Journal of Raman Spectroscopy, 2007, 38, 1345-1351.	1.2	61

#	ARTICLE	IF	CITATIONS
109	Controlled Release of Chlorhexidine Diacetate from a Porous Methacrylate System: Supercritical Fluid Assisted Foaming and Impregnation. Journal of Pharmaceutical Sciences, 2007, 96, 2048-2056.	1.6	38
110	Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications. International Journal of Pharmaceutics, 2006, 315, 93-98.	2.6	48
111	Biodegradable Polyurethanes: Biodegradable Low Adherence Films for the Prevention of Adhesions after Surgery. Journal of Biomaterials Applications, 1996, 11, 182-257.	1.2	17
112	Vibrational Spectroscopy for Tissue Analysis. , 0, , .		56