List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8378711/publications.pdf Version: 2024-02-01

TENNA RUS

#	Article	IF	CITATIONS
1	Epiphytic biofilms in freshwater and interactions with macrophytes: Current understanding and future directions. Aquatic Botany, 2022, 176, 103467.	0.8	36
2	Alkalinity and diatom assemblages in lowland streams: How to separate alkalinity from inorganic phosphorus in ecological assessments?. Science of the Total Environment, 2022, 823, 153829.	3.9	9
3	Rare <i>Potamogeton</i> species can establish in restored Danish lowland stream reaches. Freshwater Biology, 2022, 67, 518-532.	1.2	1
4	Photosynthesis, growth, and distribution of plants in lowland streams—A synthesis and new data analyses of 40Âyears research. Freshwater Biology, 2022, 67, 1255-1271.	1.2	3
5	Interactions between microplastics and benthic biofilms in fluvial ecosystems: Knowledge gaps and future trends. Freshwater Science, 2022, 41, 442-458.	0.9	10
6	Macrophytes enhance reach-scale metabolism on a daily, seasonal and annual basis in agricultural lowland streams. Aquatic Sciences, 2021, 83, 1.	0.6	13
7	Investigating emergent macrophytes establishment rate and propagation towards constructed wetlands efficacy optimization. Knowledge and Management of Aquatic Ecosystems, 2021, , 23.	0.5	0
8	Influence of plant habitats on denitrification in lowland agricultural streams. Journal of Environmental Management, 2021, 286, 112193.	3.8	10
9	Influences of pesticides, nutrients, and local environmental variables on phytoplankton communities in lentic small water bodies in a German lowland agricultural area. Science of the Total Environment, 2021, 780, 146481.	3.9	32
10	Geomorphology and vegetation drive hydrochemistry changes in two Northeast Greenland streams. Hydrological Processes, 2021, 35, e14369.	1.1	5
11	Microbial biofilm community dynamics in five lowland streams. Science of the Total Environment, 2021, 798, 149169.	3.9	10
12	Danish wetlands remained poor with plant species 17-years after restoration. Science of the Total Environment, 2021, 798, 149146.	3.9	9
13	Temperature-induced changes in biofilm organic matter utilization in arctic streams (Disko Island,) Tj ETQq1 1 ().784314 r 0.5	gBT_/Overloc 2
14	Effects of the herbicides metazachlor and flufenacet on phytoplankton communities – A microcosm assay. Ecotoxicology and Environmental Safety, 2021, 228, 113036.	2.9	13
15	Epiphyton in Agricultural Streams: Structural Control and Comparison to Epilithon. Water (Switzerland), 2021, 13, 3443.	1.2	3
16	Hydromorphology as a controlling factor of macrophytes assemblage structure and functional traits in the semi-arid European Mediterranean streams. Science of the Total Environment, 2020, 703, 134658.	3.9	15
17	Riverine macrophytes control seasonal nutrient uptake via both physical and biological pathways. Freshwater Biology, 2020, 65, 178-192.	1.2	15
18	Short-period hydrological regimes override physico-chemical variables in shaping stream diatom traits, biomass and biofilm community functions. Science of the Total Environment, 2020, 743, 140720.	3.9	25

#	Article	IF	CITATIONS
19	Changes in hydrology affects stream nutrient uptake and primary production in a high-Arctic stream. Biogeochemistry, 2020, 151, 187-201.	1.7	1
20	A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. Journal of Environmental Management, 2020, 274, 111181.	3.8	24
21	Global Overview of Ecosystem Services Provided by Riparian Vegetation. BioScience, 2020, 70, 501-514.	2.2	171
22	Hydraulic effects of stormwater discharge into a small stream. Journal of Environmental Management, 2020, 270, 110793.	3.8	1
23	Biofilm Growth in Two Streams Draining Mountainous Permafrost Catchments in NE Greenland. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005557.	1.3	5
24	Effects of low flow and co-occurring stressors on structural and functional characteristics of the benthic biofilm in small streams. Science of the Total Environment, 2020, 733, 139331.	3.9	10
25	Microbial carbon and nitrogen processes in highâ€Arctic riparian soils. Permafrost and Periglacial Processes, 2020, 31, 223-236.	1.5	7
26	Shading may alter the colonization pattern and dominance between two invasive submerged aquatic plant species. Aquatic Ecology, 2020, 54, 721-728.	0.7	4
27	Probing the Response of the Amphibious Plant Butomus umbellatus to Nutrient Enrichment and Shading by Integrating Eco-Physiological With Metabolomic Analyses. Frontiers in Plant Science, 2020, 11, 581787.	1.7	2
28	Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science, 2019, 366, 878-881.	6.0	80
29	Environmental filtering of native and non-native stream macrophyte assemblages by habitat disturbances in an agricultural landscape. Science of the Total Environment, 2019, 659, 1370-1381.	3.9	16
30	Riverine distribution of mussel environmental <scp>DNA</scp> reflects a balance among density, transport, and removal processes. Freshwater Biology, 2019, 64, 1467-1479.	1.2	42
31	Shading constrains the growth of invasive submerged macrophytes in streams. Aquatic Botany, 2019, 158, 103125.	0.8	12
32	Trait dependent roles of environmental factors, spatial processes and grazing pressure on lake phytoplankton metacommunity. Ecological Indicators, 2019, 103, 312-320.	2.6	25
33	Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. Microbial Ecology, 2019, 78, 539-554.	1.4	17
34	The future of European water management: Demonstration of a new WFD compliant framework to support sustainable management under multiple stress. Science of the Total Environment, 2019, 654, 53-59.	3.9	13
35	Flow regimes filter species traits of benthic diatom communities and modify the functional features of lowland streams - a nationwide scale study. Science of the Total Environment, 2019, 651, 357-366.	3.9	44
36	Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution, 2018, 8, 2947-2961.	0.8	40

#	Article	IF	CITATIONS
37	Nutrient uptake controls and limitation dynamics in north-east Greenland streams. Polar Research, 2018, 37, 1440107.	1.6	20
38	Spatioâ€ŧemporal dynamics of macroinvertebrate communities in northeast Greenlandic snowmelt streams. Ecohydrology, 2018, 11, e1982.	1,1	10
39	Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshwater Biology, 2018, 63, 652-661.	1.2	18
40	Structural and functional responses of plant communities to climate changeâ€mediated alterations in the hydrology of riparian areas in temperate Europe. Ecology and Evolution, 2018, 8, 4120-4135.	0.8	14
41	Riparian forest modifies fuelling sources for stream food webs but not food-chain length in lowland streams of Denmark. Hydrobiologia, 2018, 805, 291-310.	1.0	12
42	Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecological Monographs, 2018, 88, 120-138.	2.4	60
43	Longitudinal distribution of macroinvertebrates in snowmelt streams in northeast Greenland: understanding biophysical controls. Polar Biology, 2018, 41, 1567-1580.	0.5	9
44	Submerged freshwater plant communities do not show species complementarity effect in wetland mesocosms. Biology Letters, 2018, 14, 20180635.	1.0	13
45	Ecological Restoration as a Means of Managing Inland Flood Hazards. BioScience, 2018, 68, 89-99.	2.2	29
46	Controls on stream hydrochemistry dynamics in a high Arctic snow overed watershed. Hydrological Processes, 2018, 32, 3327-3340.	1.1	7
47	Nutrient kinetics in submerged plant beds: A mesocosm study simulating constructed drainage wetlands. Ecological Engineering, 2018, 122, 263-270.	1.6	9
48	Responses of benthic algal communities and their traits to experimental changes in fine sediments, nutrients and flow. Freshwater Biology, 2017, 62, 1539-1550.	1.2	20
49	Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecological Indicators, 2017, 81, 124-131.	2.6	98
50	Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type. Science of the Total Environment, 2017, 599-600, 1517-1523.	3.9	32
51	Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Clobal Change Biology, 2017, 23, 3052-3063.	4.2	31
52	A new paradigm for biomonitoring: an example building on the Danish Stream Plant Index. Methods in Ecology and Evolution, 2017, 8, 297-307.	2.2	11
53	Large thermo-erosional tunnel for a river in northeast Greenland. Polar Science, 2017, 14, 83-87.	0.5	13
54	Drivers of nitrogen transfer in stream food webs across continents. Ecology, 2017, 98, 3044-3055.	1.5	13

TENNA RIIS

#	Article	IF	CITATIONS
55	Experimental drought changes ecosystem structure and function in a macrophyte-rich stream. Aquatic Sciences, 2017, 79, 841-853.	0.6	13
56	Macrophytes and Bryophytes. , 2017, , 243-271.		25
57	Genetic structure of the submersed Ranunculus baudotii (sect. Batrachium) population in a lowland stream in Denmark. Aquatic Botany, 2017, 136, 186-196.	0.8	6
58	Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyteâ€ r ich streams. Oikos, 2017, 126, 398-409.	1.2	30
59	Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water. Plant Biology, 2016, 18, 301-306.	1.8	3
60	Functional trait composition of aquatic plants can serve to disentangle multiple interacting stressors in lowland streams. Science of the Total Environment, 2016, 543, 230-238.	3.9	51
61	N- and P-addition inhibits growth of rich fen bryophytes. Journal of Bryology, 2016, 38, 127-137.	0.4	5
62	Baseline identification in stable-isotope studies of temperate lotic systems and implications for calculated trophic positions. Freshwater Science, 2016, 35, 909-921.	0.9	8
63	Comparison of metabolic rates among macrophyte and nonmacrophyte habitats in streams. Freshwater Science, 2016, 35, 834-844.	0.9	17
64	Importance of sampling frequency when collecting diatoms. Scientific Reports, 2016, 6, 36950.	1.6	19
65	Mosses in High-Arctic lakes: in situ measurements of annual primary production and decomposition. Polar Biology, 2016, 39, 543-552.	0.5	14
66	Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams. Inland Waters, 2015, 5, 27-38.	1.1	14
67	Plant trait characteristics vary with size and eutrophication in <scp>E</scp> uropean lowland streams. Journal of Applied Ecology, 2015, 52, 1617-1628.	1.9	31
68	Macrophyte Complexity Controls Nutrient Uptake in Lowland Streams. Ecosystems, 2015, 18, 914-931.	1.6	77
69	Whole-stream metabolism in nutrient-poor calcareous streams on ×land, Sweden. Aquatic Sciences, 2015, 77, 207-219.	0.6	8
70	You are not always what we think you eat: selective assimilation across multiple wholeâ€stream isotopic tracer studies. Ecology, 2014, 95, 2757-2767.	1.5	44
71	Effects of warming on annual production and nutrientâ€use efficiency of aquatic mosses in a high Arctic lake. Freshwater Biology, 2014, 59, 1622-1632.	1.2	15
72	Fast reaction of macroinvertebrate communities to stagnation and drought in streams with contrasting nutrient availability. Freshwater Science, 2014, 33, 847-859.	0.9	22

#	Article	IF	CITATIONS
73	The role of species functional traits in distributional patterns of lowland stream vegetation. Freshwater Science, 2014, 33, 1074-1085.	0.9	11
74	Seed germination from deposited sediments during high winter flow in riparian areas. Ecological Engineering, 2014, 66, 103-110.	1.6	14
75	Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments. Ecological Engineering, 2014, 66, 111-119.	1.6	9
76	CATCHMENT CHARACTERISTICS AND PLANT RECRUITMENT FROM SEDIMENT IN STREAM AND MEADOW HABITATS. River Research and Applications, 2013, 29, 855-863.	0.7	9
77	From expert judgement to supervised classification: A new approach to assess ecological status in lowland streams. Science of the Total Environment, 2013, 447, 116-122.	3.9	12
78	Effects of stream flooding on the distribution and diversity of groundwaterâ€dependent vegetation in riparian areas. Freshwater Biology, 2013, 58, 817-827.	1.2	25
79	Species Recruitment following Flooding, Sediment Deposition and Seed Addition in Restored Riparian Areas. Restoration Ecology, 2013, 21, 399-408.	1.4	14
80	Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundamental and Applied Limnology, 2013, 183, 309-321.	0.4	16
81	Photosynthetic performance of submerged macrophytes from lowland stream and lake habitats with contrasting CO 2 availability. New Phytologist, 2013, 198, 1135-1142.	3.5	12
82	Tracing the origin of Gulf Coast <i>Phragmites</i> (Poaceae): A story of longâ€distance dispersal and hybridization. American Journal of Botany, 2012, 99, 538-551.	0.8	113
83	Exploring the borders of European Phragmites within a cosmopolitan genus. AoB PLANTS, 2012, 2012, pls020.	1.2	61
84	Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 2012, 102, 56-64.	0.8	106
85	Bicarbonate use in three aquatic plants. Aquatic Botany, 2012, 98, 57-60.	0.8	14
86	Nitrogen cycling and dynamics in a macrophyteâ€rich stream as determined by a release. Freshwater Biology, 2012, 57, 1579-1591.	1.2	44
87	Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia, 2012, 684, 143-160.	1.0	25
88	Geographically distinct Ceratophyllum demersum populations differ in growth, photosynthetic responses and phenotypic plasticity to nitrogen availability. Functional Plant Biology, 2012, 39, 774.	1.1	8
89	Spatial distribution and temporal dynamic of the seed pool in a Danish lowland stream. Aquatic Botany, 2011, 94, 188-192.	0.8	6
90	Stream ecosystem properties and processes along a temperature gradient. Aquatic Ecology, 2011, 45, 231-242.	0.7	47

#	Article	IF	CITATIONS
91	Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genetics, 2010, 11, 52.	2.7	47
92	Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?. Annals of Botany, 2010, 106, 813-822.	1.4	74
93	The effects of plant growth on stream invertebrate communities during low flow: a conceptual model. Journal of the North American Benthological Society, 2010, 29, 711-724.	3.0	29
94	Growth Rate of an Aquatic Bryophyte (<i>Warnstorfia fluitans</i> (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration. Arctic, 2010, 63, .	0.2	17
95	Transplanting macrophytes to rehabilitate streams: experience and recommendations. Aquatic Ecology, 2009, 43, 935-942.	0.7	13
96	Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquatic Botany, 2009, 90, 209-212.	0.8	64
97	Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia, 2008, 596, 341-351.	1.0	71
98	Vegetation and flow regime in lowland streams. Freshwater Biology, 2008, 53, 1531-1543.	1.2	49
99	The search for reference conditions for stream vegetation in northern Europe. Freshwater Biology, 2008, 53, 1890-1901.	1.2	45
100	Macrophytes and Bryophytes. , 2007, , 381-406.		7
101	The importance of vegetative and sexual dispersal of Luronium natans. Aquatic Botany, 2006, 84, 165-170.	0.8	16
102	Macrophytes in Urban Stream Rehabilitation: Establishment, Ecological Effects, and Public Perception. Restoration Ecology, 2006, 14, 429-440.	1.4	37
103	Dispersal of plant fragments in small streams. Freshwater Biology, 2006, 51, 274-286.	1.2	118
104	The effect of weed cutting onLuronium natans. Aquatic Conservation: Marine and Freshwater Ecosystems, 2006, 16, 409-417.	0.9	7
105	The influence of channelisation on riparian plant assemblages. Freshwater Biology, 2005, 50, 1248-1261.	1.2	40
106	Assessing the effectiveness of enhancement activities in urban streams: I. Habitat responses. River Research and Applications, 2005, 21, 381-401.	0.7	12
107	Colonisation and temporal dynamics of macrophytes in artificial stream channels with contrasting flow regimes. Archiv Für Hydrobiologie, 2004, 159, 77-95.	1.1	11
108	Impacts of different weed cutting practices on macrophyte species diversity and composition in a Danish stream. River Research and Applications, 2004, 20, 103-114.	0.7	32

#	Article	IF	CITATIONS
109	Title is missing!. Hydrobiologia, 2003, 495, 171-179.	1.0	58
110	Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshwater Biology, 2003, 48, 75-87.	1.2	58
111	Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography, 2003, 48, 1488-1497.	1.6	197
112	Seasonal changes in macrophyte biomass in South Island lowland streams, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2003, 37, 381-388.	0.8	23
113	Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany, 2002, 74, 133-148.	0.8	165
114	Abundance-range size relationships in stream vegetation in Denmark. Plant Ecology, 2002, 161, 175-183.	0.7	25
115	Long-term effects of stream management on plant communities in two Danish lowland streams. Hydrobiologia, 2002, 481, 33-45.	1.0	51
116	Distribution of macrophytes in New Zealand streams and lakes in relation to disturbance frequency and resource supply—a synthesis and conceptual model. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 255-267.	0.8	39
117	Historical changes in species composition and richness accompanying perturbation and eutrophication of Danish lowland streams over 100 years. Freshwater Biology, 2001, 46, 269-280.	1.2	102
118	Title is missing!. Hydrobiologia, 2001, 448, 217-228.	1.0	65
119	New records of Amphipoda Hyperiidea in associations with gelatinous zooplankton. Hydrobiologia, 2001, 448, 229-235.	1.0	13
120	Restoration of a Danish headwater stream: short-term changes in plant species abundance and composition. Aquatic Conservation: Marine and Freshwater Ecosystems, 2000, 10, 13-23.	0.9	18
121	Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology, 2000, 88, 1030-1040.	1.9	226
122	Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany, 2000, 66, 255-272.	0.8	123
123	Slow growth and decomposition of mosses in Arctic lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 388-393.	0.7	55
124	Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology, 1999, 42, 375-385.	1.2	121
125	Development of vegetation and environmental conditions in an oligotrophic Danish lake over 40 years. Freshwater Biology, 1998, 40, 123-134.	1.2	32
126	Growth Reconstruction and Photosynthesis of Aquatic Mosses: Influence of Light, Temperature and Carbon Dioxide at Depth. Journal of Ecology, 1997, 85, 359.	1.9	56