
Matti Ko Reinikainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8378637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Co-fed Water on a Co–Pt–Si/γ-Al ₂ O ₃ Fischer–Tropsch Catalyst Modified with an Atomic Layer Deposited or Molecular Layer Deposition Overcoating. ACS Omega, 2022, 7, 7725-7736.	3.5	0
2	The Effect of Atomic Layer Deposited Overcoat on Co-Pt-Si/γ-Al2O3 Fischer–Tropsch Catalyst. Catalysts, 2021, 11, 672.	3.5	2
3	On-Line Monitoring of Radiocarbon Emissions in a Nuclear Facility with Cavity Ring-Down Spectroscopy. Analytical Chemistry, 2021, 93, 16096-16104.	6.5	9
4	Hydrogen release from liquid organic hydrogen carriers catalysed by platinum on rutile-anatase structured titania. Chemical Communications, 2020, 56, 1657-1660.	4.1	37
5	Kinetic Modelling of the Aqueous-Phase Reforming of Fischer-Tropsch Water over Ceria-Zirconia Supported Nickel-Copper Catalyst. Catalysts, 2019, 9, 936.	3.5	12
6	Kinetic Study Based on the Carbide Mechanism of a Co-Pt/γ-Al2O3 Fischer–Tropsch Catalyst Tested in a Laboratory-Scale Tubular Reactor. Catalysts, 2019, 9, 717.	3.5	15
7	Laser Spectroscopy for Monitoring of Radiocarbon in Atmospheric Samples. Analytical Chemistry, 2019, 91, 12315-12320.	6.5	25
8	Aqueous-phase reforming of bio-oil aqueous fraction over nickel-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 13157-13168.	7.1	43
9	Aqueous-phase reforming of Fischer-Tropsch alcohols over nickel-based catalysts to produce hydrogen: Product distribution and reaction pathways. Applied Catalysis A: General, 2018, 567, 112-121.	4.3	19
10	Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 2018, 28, 235-246.	6.8	99
11	Study of Formaldehyde and Formic Acid Contamination Effect on PEMFC. Journal of the Electrochemical Society, 2018, 165, F718-F727.	2.9	11
12	Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production. Biomass and Bioenergy, 2017, 106, 29-37.	5.7	39
13	A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions. International Journal of Hydrogen Energy, 2016, 41, 11003-11032.	7.1	117
14	Co-processing of Dry Bio-oil, Catalytic Pyrolysis Oil, and Hydrotreated Bio-oil in a Micro Activity Test Unit. Energy & Fuels, 2015, 29, 3707-3714.	5.1	65
15	Behaviour of tars on the filter in high temperature filtration of biomass-based gasification gas. Fuel, 2015, 139, 220-231.	6.4	54
16	Short Vapour Residence Time Catalytic Pyrolysis of Spruce Sawdust in a Bubbling Fluidized-Bed Reactor with HZSM-5 Catalysts. Topics in Catalysis, 2013, 56, 800-812.	2.8	29
17	Thermal plasma-sprayed nickel catalysts in the clean-up of biomass gasification gas. Fuel, 2011, 90, 1076-1089.	6.4	11
18	Precious metal catalysts in the clean-up of biomass gasification gas Part 1: Monometallic catalysts and their impact on gasification gas composition. Fuel Processing Technology, 2011, 92, 1457-1465.	7.2	17

MATTI KO REINIKAINEN

#	Article	IF	CITATIONS
19	Investigation on catalytic pyrolysis of pine sawdust: Catalyst screening by Py-GC-MIP-AED. Journal of Analytical and Applied Pyrolysis, 2010, 88, 7-13.	5.5	125
20	Catalytic clean-up of gasification gas with precious metal catalysts – A novel catalytic reformer development. Fuel, 2010, 89, 3272-3277.	6.4	34
21	The Effect of Sulfur on ZrO2-Based Biomass Gasification Gas Clean-Up Catalysts. Topics in Catalysis, 2009, 52, 1070-1078.	2.8	17
22	Effect of gasification gas components on naphthalene decomposition over ZrO2. Catalysis Today, 2009, 147, S230-S236.	4.4	9
23	Acidic and basic surface sites of zirconia-based biomass gasification gas clean-up catalysts. Applied Catalysis A: General, 2009, 362, 169-177.	4.3	70
24	On-Line Gas Chromatographic Analysis of CO2 Hydrogenation Products. Studies in Surface Science and Catalysis, 2004, 153, 565-568.	1.5	1
25	Characterisation and activity evaluation of silica supported cobalt and ruthenium catalysts. Applied Catalysis A: General, 1998, 174, 61-75.	4.3	40
26	Use of silicate crystallite mesoporous material as catalyst support for Fischer–Tropsch reaction. Applied Surface Science, 1998, 130-132, 845-850.	6.1	20
27	Reactions of synthesis gas on Colr/SiO2 and CoRu/SiO2. Studies in Surface Science and Catalysis, 1998, 119, 161-166.	1.5	0
28	The interrelation of the preparation method and activity of the Co-Ru/SiO2 catalysts. Studies in Surface Science and Catalysis, 1998, 118, 229-236.	1.5	1
29	TPR and FT-IR studies on carbonyl cluster derived Coî—,Ru/SiO2 catalysts. Applied Catalysis A: General, 1997, 149, 353-372.	4.3	11
30	Oxygenates from syngas over highly dispersed cobalt catalysts. Catalysis Today, 1997, 36, 311-324.	4.4	50
31	CO hydrogenation activity of carbonyl cluster derived Co-RuSiO2 catalysts prepared by reflux method. Journal of Molecular Catalysis A, 1997, 118, 137-144.	4.8	21
32	The effect of decomposition atmosphere on the activity and selectivity of the carbonyl cluster derived Co/SiO2 and Rh/SiO2 catalysts. Journal of Molecular Catalysis A, 1997, 121, 1-8.	4.8	12
33	The activity of carbonyl cluster derived Co-RuSiO2 and Co-RhSiO2 catalysts in CO hydrogenation. Journal of Molecular Catalysis A, 1996, 106, 187-195.	4.8	26
34	Selective Vapor Phase Hydroformylation of Olefins Over Cluster-Derived Cobalt Catalysts Promoted by Alkaline Earth Oxides. Studies in Surface Science and Catalysis, 1993, 75, 2297-2300.	1.5	3
35	Promoting effects of alkaline earth oxides on the vapor phase carbonylation of ethene over cluster-derived cobalt catalysts. Applied Catalysis, 1991, 73, 281-287.	0.8	11
36	Selective vapor phase hydroformylation of ethylene over cluster-derived cobalt catalyst. Catalysis Letters, 1991, 8, 253-261.	2.6	21

#	Article	IF	CITATIONS
37	Effects of modification of highly dispersed cobalt catalysts with alkali cations on the hydrogenation of carbon monoxide. Catalysis Letters, 1991, 10, 193-199.	2.6	20