Tamas Revesz

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8378510/tamas-revesz-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,263 193 71 137 h-index g-index citations papers 10.6 208 6.24 21,952 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
193	Prion-like Bynuclein pathology in the brain of infants with Krabbe disease <i>Brain</i> , 2022 ,	11.2	2
192	Age-dependent formation of TMEM106B amyloid filaments in human brains Nature, 2022,	50.4	6
191	Dissecting the Phenotype and Genotype of PLA2G6-Related Parkinsonism. <i>Movement Disorders</i> , 2021 ,	7	8
190	A Clinicopathologic Study of Movement Disorders in Frontotemporal Lobar Degeneration. <i>Movement Disorders</i> , 2021 , 36, 632-641	7	2
189	Neuropathological and Biomarker Findings in Parkinson@ Disease and Alzheimer@ Disease: From Protein Aggregates to Synaptic Dysfunction. <i>Journal of Parkinsonis Disease</i> , 2021 , 11, 107-121	5.3	12
188	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. <i>Lancet Neurology, The</i> , 2021 , 20, 107-116	24.1	23
187	Structure-based classification of tauopathies. <i>Nature</i> , 2021 , 598, 359-363	50.4	59
186	Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. <i>Neurobiology of Disease</i> , 2021 , 158, 105452	7.5	О
185	MOBP and HIP1 in multiple system atrophy: New Bynuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. <i>Neuropathology and Applied Neurobiology</i> , 2021 , 47, 640-652	5.2	4
184	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. <i>Acta Neuropathologica</i> , 2020 , 139, 717-734	14.3	8
183	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. <i>Acta Neuropathologica Communications</i> , 2020 , 8, 5	7-3	15
182	Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome. JAMA Neurology, 2020 , 77, 377-387	17.2	44
181	Neuronal intranuclear inclusion disease is genetically heterogeneous. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 1716-1725	5.3	18
180	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. <i>Neurobiology of Disease</i> , 2020 , 146, 105079	7.5	О
179	White matter DNA methylation profiling reveals deregulation of HIP1, LMAN2, MOBP, and other loci in multiple system atrophy. <i>Acta Neuropathologica</i> , 2020 , 139, 135-156	14.3	21
178	Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. <i>Frontiers in Neurology</i> , 2020 , 11, 589471	4.1	1
177	A novel mutation in a family with diverse frontotemporal dementia spectrum disorders. <i>Journal of Physical Education and Sports Management</i> , 2019 , 5,	2.8	15

Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501 176 15 LATE to the PART-y. *Brain*, **2019**, 142, e47 175 11.2 25 The genetic and clinico-pathological profile of early-onset progressive supranuclear palsy. 8 174 7 Movement Disorders, **2019**, 34, 1307-1314 Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233 $_{24.1}$ 173 34 A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology 5.6 172 10 of Aging, 2019, 75, 223.e1-223.e10 Neuroaxonal Dystrophy/Neurodegeneration with Brain Iron Accumulation 2018, 455-468 171 Variation at the TRIM11 locus modifies progressive supranuclear palsy phenotype. Annals of 28 170 9.4 *Neurology*, **2018**, 84, 485-496 The presubiculum is preserved from neurodegenerative changes in Alzheimer@ disease. Acta 169 7.3 Neuropathologica Communications, 2018, 6, 62 Pathological correlates of white matter hyperintensities in a case of progranulin mutation 168 0.8 24 associated frontotemporal dementia. Neurocase, 2018, 24, 166-174 Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide 167 24.1 121 association study. Lancet Neurology, The, 2018, 17, 64-74 The aftermath of boxing revisited: identifying chronic traumatic encephalopathy pathology in the 166 14.3 19 original Corsellis boxer series. Acta Neuropathologica, 2018, 136, 973-974 The clinical, neuroanatomical, and neuropathologic phenotype of -associated frontotemporal dementia: A longitudinal case report. Alzheimerrs and Dementia: Diagnosis, Assessment and Disease 165 5.2 Monitoring, 2017, 6, 75-81 Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired 164 128 14.3 association football (soccer) players. Acta Neuropathologica, 2017, 133, 337-352 Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain, 163 11.2 40 2017, 140, 2820-2837 1115 Chronic traumatic encephalopathy in retired footballers with dementia. Journal of Neurology, 162 5.5 Neurosurgery and Psychiatry, 2017, 88, A1.1-A1 [P2B41]: PATHOLOGICAL CORRELATES OF WHITE MATTER HYPERINTENSITIES ON CADAVERIC 161 MRI IN PROGRANULIN-ASSOCIATED FRONTOTEMPORAL DEMENTIA 2017, 13, P805-P805 Association of Autonomic Dysfunction With Disease Progression and Survival in Parkinson Disease. 160 17.2 94 JAMA Neurology, 2017, 74, 970-976 Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy 159 5.6 10 bodies. Neurobiology of Aging, **2017**, 49, 214.e13-214.e15

 158 [P2f158]: IS THE PRESUBICULUM PROTECTED FROM NEURODEGENERATIVE CHANGES? A PATHOLOGICAL AND BIOCHEMICAL INVESTIGATION **2017**, 13, P668-P668

157	Parkinson@ disease without nigral degeneration: a pathological correlate of scans without evidence of dopaminergic deficit (SWEDD)?. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2016 , 87, 633-41	5.5	8
156	A genome-wide association study in multiple system atrophy. <i>Neurology</i> , 2016 , 87, 1591-1598	6.5	104
155	The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS-positive inclusions. <i>Neurobiology of Aging</i> , 2016 , 46, 192-203	5.6	16
154	Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. <i>Brain</i> , 2016 , 139, 3237-3252	11.2	80
153	Clinical phenotype and genetic associations in autosomal dominant familial Alzheimer@ disease: a case series. <i>Lancet Neurology, The</i> , 2016 , 15, 1326-1335	24.1	109
152	Apomorphine: A potential modifier of amyloid deposition in Parkinson@ disease?. <i>Movement Disorders</i> , 2016 , 31, 668-75	7	23
151	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson@and Alzheimer@diseases. <i>Neurobiology of Aging</i> , 2016 , 38, 214.e7-214.e10	5.6	49
150	Characterization of tau positron emission tomography tracer [F]AV-1451 binding to postmortem tissue in Alzheimer@ disease, primary tauopathies, and other dementias. <i>Alzheimeris and Dementia</i> , 2016 , 12, 1116-1124	1.2	139
149	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. <i>American Journal of Human Genetics</i> , 2016 , 98, 500-5	513	225
148	Neuropathological criteria of anti-IgLON5-related tauopathy. <i>Acta Neuropathologica</i> , 2016 , 132, 531-43	14.3	107
147	Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer@ disease. <i>Neuropathology and Applied Neurobiology</i> , 2015 , 41, 497-506	5.2	61
146	Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer@ disease. <i>Neurobiology of Aging</i> , 2015 , 36, 3140-3151	5.6	46
145	Histological evidence of chronic traumatic encephalopathy in a large series of neurodegenerative diseases. <i>Acta Neuropathologica</i> , 2015 , 130, 891-3	14.3	75
144	A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease. <i>Acta Neuropathologica</i> , 2015 , 130, 599-601	14.3	27
143	Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. Journal of Medical Genetics, 2015 , 52, 85-94	5.8	77
142	Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. <i>Neuropathology and Applied Neurobiology</i> , 2015 , 41, 858-81	5.2	130
141	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. <i>Molecular Neurodegeneration</i> , 2015 , 10, 41	19	62

(2014-2015)

140	Serotonergic markers in Parkinson@ disease and levodopa-induced dyskinesias. <i>Movement Disorders</i> , 2015 , 30, 796-804	7	24
139	Minimal change multiple system atrophy: an aggressive variant?. <i>Movement Disorders</i> , 2015 , 30, 960-7	7	30
138	Temporal Variant Frontotemporal Dementia is Associated with Globular Glial Tauopathy. <i>Cognitive and Behavioral Neurology</i> , 2015 , 28, 92-7	1.6	18
137	Concomitant fragile X-associated tremor ataxia syndrome and Parkinson@ disease: a clinicopathological report of two cases. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2015 , 86, 93	4- 5 5	16
136	Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. <i>Neurobiology of Aging</i> , 2015 , 36, 546.e1-7	5.6	41
135	Analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. <i>Neurobiology of Aging</i> , 2015 , 36, 1221.e1-6	5.6	32
134	Spontaneous ARIA (amyloid-related imaging abnormalities) and cerebral amyloid angiopathy related inflammation in presenilin 1-associated familial Alzheimer@ disease. <i>Journal of Alzheimerrs Disease</i> , 2015 , 44, 1069-74	4.3	16
133	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. <i>Lancet Neurology, The</i> , 2015 , 14, 291-301	24.1	165
132	Multiple system atrophy is not caused by C9orf72 hexanucleotide repeat expansions. <i>Neurobiology of Aging</i> , 2015 , 36, 1223.e1-2	5.6	19
131	Brain amyloid-beta fragment signatures in pathological ageing and Alzheimer@ disease by hybrid immunoprecipitation mass spectrometry. <i>Neurodegenerative Diseases</i> , 2015 , 15, 50-7	2.3	33
130	Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. <i>Journal of Neural Transmission</i> , 2015 , 122, 957-72	4.3	19
129	Evaluating the relationship between amyloid-land Bynuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson@ disease. <i>Alzheimerrs Research and Therapy</i> , 2014 , 6, 77	9	60
128	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. <i>Human Molecular Genetics</i> , 2014 , 23, 6139-46	5.6	152
127	TDP-43 pathology is present in most post-encephalitic parkinsonism brains. <i>Neuropathology and Applied Neurobiology</i> , 2014 , 40, 654-7	5.2	8
126	Alpha-synuclein mRNA expression in oligodendrocytes in MSA. <i>Glia</i> , 2014 , 62, 964-70	9	121
125	A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia. <i>Neuropathology and Applied Neurobiology</i> , 2014 , 40, 502-13	5.2	31
124	A 6.4 Mb duplication of the Bynuclein locus causing frontotemporal dementia and Parkinsonism: phenotype-genotype correlations. <i>JAMA Neurology</i> , 2014 , 71, 1162-71	17.2	51
123	Concomitant progressive supranuclear palsy and chronic traumatic encephalopathy in a boxer. <i>Acta Neuropathologica Communications</i> , 2014 , 2, 24	7.3	16

122	The significance of Bynuclein, amyloid-Dand tau pathologies in Parkinson Q disease progression and related dementia. <i>Neurodegenerative Diseases</i> , 2014 , 13, 154-6	2.3	66
121	MM2 subtype of sporadic Creutzfeldt-Jakob disease may underlie the clinical presentation of progressive supranuclear palsy. <i>Journal of Neurology</i> , 2013 , 260, 1031-6	5.5	17
120	Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. <i>Acta Neuropathologica</i> , 2013 , 126, 401-9	14.3	119
119	A novel prion disease associated with diarrhea and autonomic neuropathy. <i>New England Journal of Medicine</i> , 2013 , 369, 1904-14	59.2	93
118	Globular glial tauopathies (GGT): consensus recommendations. <i>Acta Neuropathologica</i> , 2013 , 126, 537-5	544 .3	136
117	Neuropathological findings in benign tremulous parkinsonism. <i>Movement Disorders</i> , 2013 , 28, 145-52	7	56
116	The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. <i>Neurology</i> , 2013 , 80, 1856-61	6.5	114
115	TDP-43 pathology in a patient carrying G2019S LRRK2[mutation and a novel p.Q124E MAPT. <i>Neurobiology of Aging</i> , 2013 , 34, 2889.e5-9	5.6	33
114	Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. <i>Neurobiology of Aging</i> , 2013 , 34, 1416-25	5.6	12
113	Parkin disease: a clinicopathologic entity?. <i>JAMA Neurology</i> , 2013 , 70, 571-9	17.2	101
112	⊞ynucleinopathy associated with G51D SNCA mutation: a link between Parkinson@ disease and multiple system atrophy?. <i>Acta Neuropathologica</i> , 2013 , 125, 753-69	14.3	298
111	Genetic analysis of inherited leukodystrophies: genotype-phenotype correlations in the CSF1R gene. <i>JAMA Neurology</i> , 2013 , 70, 875-882	17.2	58
110	Exome sequencing reveals a novel partial deletion in the progranulin gene causing primary progressive aphasia. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2013 , 84, 1411-2	5.5	8
109	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson@ disease. <i>Human Molecular Genetics</i> , 2013 , 22, 1039-49	5.6	96
108	C9ORF72 expansions, parkinsonism, and Parkinson disease: a clinicopathologic study. <i>Neurology</i> , 2013 , 81, 808-11	6.5	49
107	A NOVEL TAUOPATHY PRESENTING WITH A MOTOR NEURONE DISEASE PHENOTYPE. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 2013 , 84, e2.123-e2	5.5	
106	Identification and quantification of oligodendrocyte precursor cells in multiple system atrophy, progressive supranuclear palsy and Parkinson@ disease. <i>Brain Pathology</i> , 2013 , 23, 263-73	6	52
105	Reply to letter: Multiple system atrophy-parkinsonism with slow progression and prolonged survival: a diagnostic catch. <i>Movement Disorders</i> , 2013 , 28, 408	7	

(2011-2012)

104	Difference in MSA phenotype distribution between populations: genetics or environment?. <i>Journal of Parkinsonis Disease</i> , 2012 , 2, 7-18	5.3	27
103	Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. <i>Neurobiology of Aging</i> , 2012 , 33, 814-23	5.6	151
102	Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. <i>Neurobiology of Aging</i> , 2012 , 33, 426.e13-21	5.6	55
101	Tau acts as an independent genetic risk factor in pathologically proven PD. <i>Neurobiology of Aging</i> , 2012 , 33, 838.e7-11	5.6	20
100	The MAPT p.A152T variant is a risk factor associated with tauopathies with atypical clinical and neuropathological features. <i>Neurobiology of Aging</i> , 2012 , 33, 2231.e7-2231.e14	5.6	57
99	The spread of neurodegenerative disease. New England Journal of Medicine, 2012, 366, 2126-8	59.2	67
98	Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. <i>Movement Disorders</i> , 2012 , 27, 1754-62	7	126
97	Multiple system atrophy-parkinsonism with slow progression and prolonged survival: a diagnostic catch. <i>Movement Disorders</i> , 2012 , 27, 1186-90	7	72
96	Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. <i>Brain</i> , 2012 , 135, 736-50	11.2	340
95	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. <i>Nature Genetics</i> , 2011 , 43, 699-705	36.3	386
94	Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson@ disease. <i>Molecular Genetics and Metabolism</i> , 2011 , 103, 410-2	3.7	30
93	Mutational analysis of parkin and PINK1 in multiple system atrophy. <i>Neurobiology of Aging</i> , 2011 , 32, 548.e5-7	5.6	10
92	Disentangling the relationship between lewy bodies and nigral neuronal loss in Parkinson@ disease. Journal of Parkinsons Disease, 2011 , 1, 277-86	5.3	74
91	TDP-43 pathology may occur in the BRI2 gene-related dementias. <i>Acta Neuropathologica</i> , 2011 , 121, 559-60	14.3	3
90	Neuropathology underlying clinical variability in patients with synucleinopathies. <i>Acta Neuropathologica</i> , 2011 , 122, 187-204	14.3	292
89	Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. <i>Acta Neuropathologica</i> , 2011 , 122, 415-28	14.3	60
88	Transportin1: a marker of FTLD-FUS. Acta Neuropathologica, 2011, 122, 591-600	14.3	50
87	Postural instability, frontotemporal dementia, and ophthalmoplegia: clinicopathological case. <i>Movement Disorders</i> , 2011 , 26, 1808-13	7	2

86	A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. <i>Brain</i> , 2011 , 134, 2548-64	11.2	65
85	Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. <i>Brain</i> , 2011 , 134, 2565-81	11.2	251
84	Lewy- and Alzheimer-type pathologies in Parkinson@ disease dementia: which is more important?. <i>Brain</i> , 2011 , 134, 1493-1505	11.2	399
83	The clinical and neuroanatomical phenotype of FUS associated frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2011 , 82, 1405-7	5.5	30
82	Testing an aetiological model of visual hallucinations in Parkinson@ disease. <i>Brain</i> , 2011 , 134, 3299-309	11.2	106
81	Genetic variability at the PARK16 locus. European Journal of Human Genetics, 2010 , 18, 1356-9	5.3	69
80	Relationships between age and late progression of Parkinson@ disease: a clinico-pathological study. <i>Brain</i> , 2010 , 133, 1755-62	11.2	280
79	Does corticobasal degeneration exist? A clinicopathological re-evaluation. <i>Brain</i> , 2010 , 133, 2045-57	11.2	302
78	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. <i>Acta Neuropathologica</i> , 2010 , 119, 1-4	14.3	711
77	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41	14.3	198
77 76		14.3	198 49
	degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41 Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 ,		
76	degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41 Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 , 120, 327-41	14.3	49
76 75	degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41 Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 , 120, 327-41 Hyposmia in progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 570-7 Impulsive-compulsive spectrum behaviors in pathologically confirmed progressive supranuclear	14.3	49
76 75 74	degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41 Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 , 120, 327-41 Hyposmia in progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 570-7 Impulsive-compulsive spectrum behaviors in pathologically confirmed progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 638-42	14.3	49 38 30
76 75 74 73	degeneration. <i>Acta Neuropathologica</i> , 2010 , 120, 33-41 Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 , 120, 327-41 Hyposmia in progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 570-7 Impulsive-compulsive spectrum behaviors in pathologically confirmed progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 638-42 CEREBRAL AMYLOID ANGIOPATHY AND ALZHEIMER DISEASE 2010 , 61, S111-S124 PYROGLUTAMATE FORMATION AT THE N-TERMINI OF ABRI MOLECULES IN FAMILIAL BRITISH	14.3	49 38 30 15
76 75 74 73 72	Brain biopsy in dementia: clinical indications and diagnostic approach. <i>Acta Neuropathologica</i> , 2010 , 120, 327-41 Hyposmia in progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 570-7 Impulsive-compulsive spectrum behaviors in pathologically confirmed progressive supranuclear palsy. <i>Movement Disorders</i> , 2010 , 25, 638-42 CEREBRAL AMYLOID ANGIOPATHY AND ALZHEIMERQ DISEASE 2010 , 61, S111-S124 PYROGLUTAMATE FORMATION AT THE N-TERMINI OF ABRI MOLECULES IN FAMILIAL BRITISH DEMENTIA IS NOT RESTRICTED TO THE CENTRAL NERVOUS SYSTEM 2010 , 61, S262-S269 Glucocerebrosidase mutations in clinical and pathologically proven ParkinsonQ disease. <i>Brain</i> , 2009 ,	14.3 7	49 38 30 15

(2007-2009)

68	Can olfactory bulb biopsy be justified for the diagnosis of Parkinson@ disease? Comments on "olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders". Acta Neuropathologica, 2009, 117, 213-4; author reply 217-8	14.3	19
67	Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. <i>Acta Neuropathologica</i> , 2009 , 117, 309-20	14.3	119
66	Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. <i>Acta Neuropathologica</i> , 2009 , 118, 115-30	14.3	212
65	The genetics of Parkinson@syndromes: a critical review. <i>Current Opinion in Genetics and Development</i> , 2009 , 19, 254-65	4.9	168
64	Clinical and pathological features of an Alzheimer@disease patient with the MAPT Delta K280 mutation. <i>Neurobiology of Aging</i> , 2009 , 30, 388-93	5.6	45
63	Regional differences in the severity of Lewy body pathology across the olfactory cortex. <i>Neuroscience Letters</i> , 2009 , 453, 77-80	3.3	96
62	Concomitant progressive supranuclear palsy and multiple system atrophy: more than a simple twist of fate?. <i>Neuroscience Letters</i> , 2009 , 467, 208-11	3.3	17
61	Parkinson@ disease. <i>Lancet, The</i> , 2009 , 373, 2055-66	40	1541
60	Research in motion: the enigma of Parkinson@ disease pathology spread. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 741-5	13.5	251
59	Lewy bodies in grafted neurons in subjects with Parkinson@ disease suggest host-to-graft disease propagation. <i>Nature Medicine</i> , 2008 , 14, 501-3	50.5	1293
58	A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. <i>Brain</i> , 2008 , 131, 706-20	11.2	198
57	Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. <i>Archives of Neurology</i> , 2008 , 65, 506-13		48
56	MAPT S305I mutation: implications for argyrophilic grain disease. <i>Acta Neuropathologica</i> , 2008 , 116, 103	3 -11/8 3	44
55	Cortical alpha-synuclein load is associated with amyloid-beta plaque burden in a subset of Parkinson@ disease patients. <i>Acta Neuropathologica</i> , 2008 , 115, 417-25	14.3	121
54	LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. <i>Acta Neuropathologica</i> , 2008 , 116, 639-46	14.3	38
53	Diseases of movement and system degenerations 2008 , 889-1030		5
52	Preferential association of serum amyloid P component with fibrillar deposits in familial British and Danish dementias: similarities with Alzheimer@ disease. <i>Journal of the Neurological Sciences</i> , 2007 , 257, 88-96	3.2	24
51	Genetic variation at the tau locus and clinical syndromes associated with progressive supranuclear palsy. <i>Movement Disorders</i> , 2007 , 22, 895-7	7	20

50	Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. <i>Movement Disorders</i> , 2007 , 22, 2235-41	7	188
49	Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. <i>Nature Genetics</i> , 2007 , 39, 1434-6	36.3	152
48	The phagocytic capacity of neurones. European Journal of Neuroscience, 2007, 25, 2947-55	3.5	30
47	DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. <i>Neurobiology of Disease</i> , 2007 , 28, 122-32	7.5	31
46	Adult-onset neurodegeneration with brain iron accumulation and cortical alpha-synuclein and tau pathology: a distinct clinicopathological entity. <i>Archives of Neurology</i> , 2007 , 64, 280-2		34
45	Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson@syndrome. <i>Brain</i> , 2007 , 130, 1566-76	11.2	289
44	NR4A2 genetic variation in sporadic Parkinson@ disease: a genewide approach. <i>Movement Disorders</i> , 2006 , 21, 1960-3	7	14
43	UCHL-1 is not a Parkinson@ disease susceptibility gene. <i>Annals of Neurology</i> , 2006 , 59, 627-33	9.4	107
42	An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. <i>Acta Neuropathologica</i> , 2006 , 111, 329-40	14.3	81
41	Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson@ disease: clinical, pathological, olfactory and functional imaging and genetic data. <i>Brain</i> , 2005 , 128, 2786-96	11.2	283
40	A common LRRK2 mutation in idiopathic Parkinson@ disease. Lancet, The, 2005, 365, 415-6	40	283
39	Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson@syndrome and PSP-parkinsonism. <i>Brain</i> , 2005 , 128, 1247-58	11.2	583
38	UCHL-1 gene in multiple system atrophy: a haplotype tagging approach. <i>Movement Disorders</i> , 2005 , 20, 1338-43	7	15
37	Sporadic four-repeat tauopathy with frontotemporal degeneration, parkinsonism and motor neuron disease. <i>Acta Neuropathologica</i> , 2005 , 110, 600-9	14.3	28
36	Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (ADan AND A{beta}) in the absence of compact plaques. <i>Journal of Biological Chemistry</i> , 2005 , 280, 36883-94	5.4	53
35	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson@ disease. <i>Brain</i> , 2004 , 127, 420-30	11.2	341
34	The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. <i>Brain</i> , 2004 , 127, 2657-71	11.2	359
33	Detecting tau isoforms in archival cases. <i>Acta Neuropathologica</i> , 2004 , 107, 181-2	14.3	3

(2000-2004)

32	Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. <i>Movement Disorders</i> , 2004 , 19, 630-40	7	273
31	Somatic and germline mosaicism in sporadic early-onset Alzheimer@disease. <i>Human Molecular Genetics</i> , 2004 , 13, 1219-24	5.6	76
30	Familial and sporadic cerebral amyloid angiopathies associated with dementia and the BRI dementias 2004 , 330-352		6
29	Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. <i>Journal of Neuropathology and Experimental Neurology</i> , 2003 , 62, 885-98	3.1	207
28	Neurofilament inclusion body disease: a new proteinopathy?. <i>Brain</i> , 2003 , 126, 2291-303	11.2	162
27	Anatamopathological spectrum of tauopathies. <i>Movement Disorders</i> , 2003 , 18 Suppl 6, S13-20	7	18
26	Sporadic and familial cerebral amyloid angiopathies. <i>Brain Pathology</i> , 2002 , 12, 343-57	6	137
25	Complement activation in chromosome 13 dementias. Similarities with Alzheimer disease. <i>Journal of Biological Chemistry</i> , 2002 , 277, 49782-90	5.4	47
24	Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta. <i>Journal of Neuropathology and Experimental Neurology</i> , 2002 , 61, 254-67	7 ^{3.1}	102
23	A multidisciplinary team approach to skull base chondrosarcomas. <i>Journal of Neurosurgery</i> , 2001 , 95, 184-9	3.2	88
22	Systemic amyloid deposits in familial British dementia. <i>Journal of Biological Chemistry</i> , 2001 , 276, 43909	9- <u>4</u> .4	57
21	A pathogenic presenilin-1 deletion causes abberrant Abeta 42 production in the absence of congophilic amyloid plaques. <i>Journal of Biological Chemistry</i> , 2001 , 276, 7233-9	5.4	63
20	A multidisciplinary team approach to skull base chordomas. <i>Journal of Neurosurgery</i> , 2001 , 95, 175-83	3.2	131
19	Regional distribution of amyloid-Bri deposition and its association with neurofibrillary degeneration in familial British dementia. <i>American Journal of Pathology</i> , 2001 , 158, 515-26	5.8	115
18	Sequence, genomic structure and tissue expression of Human BRI3, a member of the BRI gene family. <i>Gene</i> , 2001 , 266, 95-102	3.8	48
17	A novel presenilin mutation (M233V) causing very early onset Alzheimer@disease with Lewy bodies. <i>Neuroscience Letters</i> , 2001 , 313, 93-5	3.3	47
16	Chromosome 13 dementia syndromes as models of neurodegeneration. <i>Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis</i> , 2001 , 8, 277-84	2.7	26
15	Variant Alzheimer@ disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-Leoncentrations. <i>Annals of Neurology</i> , 2000 , 48, 806-8	308 ⁴	113

14	Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. <i>Brain</i> , 2000 , 123 (Pt 5), 975-91	11.2	86
13	Axonal lesions in multiple sclerosis: an old story revisited. <i>Brain</i> , 2000 , 123 (Pt 2), 203-4	11.2	6
12	Variant Alzheimer@ disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-Leoncentrations 2000 , 48, 806		3
11	A stop-codon mutation in the BRI gene associated with familial British dementia. <i>Nature</i> , 1999 , 399, 776	5- 8 1.4	423
10	A case of sporadic Pick disease with onset at 27 years. <i>Archives of Neurology</i> , 1999 , 56, 1289-91		11
9	Central benzodiazepine receptor autoradiography in hippocampal sclerosis. <i>British Journal of Pharmacology</i> , 1997 , 122, 358-64	8.6	40
8	Skull base chordomas: a review of 38 patients, 1958-88. British Journal of Neurosurgery, 1993, 7, 241-8	1	93
7	Familial British and Danish Dementias515-526		2
6	Familial British Dementia487-493		
5	A Decamer Duplication in the BRI Gene Originates a de novo Amyloid Peptide that Causes Dementia in a Danish Kindred507-513		
4	Lewy Bodies in Conditions other than Disorders of ⊞ynuclein238-241		
3	Inherited Amyloidoses and Neurodegeneration: Familial British Dementia and Familial Danish Dementia	a439-4	45
2	Structure-based Classification of Tauopathies		9
1	Multiple System Atrophy242-252		5