Neal J Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/83783/publications.pdf

Version: 2024-02-01

25031 14,172 144 57 citations h-index papers

g-index 146 146 146 6212 docs citations times ranked citing authors all docs

19188

118

#	Article	IF	CITATIONS
1	Star Formation in the Milky Way and Nearby Galaxies. Annual Review of Astronomy and Astrophysics, 2012, 50, 531-608.	24.3	1,988
2	THE <i>SPITZER</i> c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES. Astrophysical Journal, Supplement Series, 2009, 181, 321-350.	7.7	1,244
3	Physical Conditions in Regions of Star Formation. Annual Review of Astronomy and Astrophysics, 1999, 37, 311-362.	24.3	500
4	THE <i>>SPITZER</i> ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS. Astrophysical Journal, 2011, 740, 109.	4.5	423
5	THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES. Astrophysical Journal, 2010, 723, 1019-1037.	4.5	390
6	PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS. Astrophysical Journal, 2009, 692, 973-997.	4.5	310
7	Tracing the Mass during Lowâ€Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores. Astrophysical Journal, 2001, 557, 193-208.	4.5	303
8	Connecting Dense Gas Tracers of Star Formation in our Galaxy to High- z Star Formation. Astrophysical Journal, 2005, 635, L173-L176.	4.5	297
9	An old disk still capable of forming a planetary system. Nature, 2013, 493, 644-646.	27.8	285
10	Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. I. Perseus. Astrophysical Journal, 2006, 638, 293-313.	4.5	280
11	Evidence for protostellar collapse in B335. Astrophysical Journal, 1993, 404, 232.	4.5	276
12	The Physical Conditions for Massive Star Formation: Dust Continuum Maps and Modeling. Astrophysical Journal, Supplement Series, 2002, 143, 469-497.	7.7	262
13	The Mass Distribution and Lifetime of Prestellar Cores in Perseus, Serpens, and Ophiuchus. Astrophysical Journal, 2008, 684, 1240-1259.	4.5	260
14	THE BOLOCAM GALACTIC PLANE SURVEY: SURVEY DESCRIPTION AND DATA REDUCTION. Astrophysical Journal, Supplement Series, 2011, 192, 4.	7.7	235
15	YOUNG STELLAR OBJECTS IN THE GOULD BELT. Astrophysical Journal, Supplement Series, 2015, 220, 11.	7.7	232
16	Identifying the Low‣uminosity Population of Embedded Protostars in the c2d Observations of Clouds and Cores. Astrophysical Journal, Supplement Series, 2008, 179, 249-282.	7.7	230
17	Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers. Astrophysical Journal, 1997, 476, 730-749.	4.5	223
18	Tracing the Mass during Lowâ€Mass Star Formation. I. Submillimeter Continuum Observations. Astrophysical Journal, Supplement Series, 2000, 131, 249-271.	7.7	222

#	Article	IF	CITATIONS
19	THE BOLOCAM GALACTIC PLANE SURVEY. II. CATALOG OF THE IMAGE DATA. Astrophysical Journal, Supplement Series, 2010, 188, 123-138.	7.7	203
20	THE PROPERTIES OF MASSIVE, DENSE CLUMPS: MAPPING SURVEYS OF HCN AND CS. Astrophysical Journal, Supplement Series, 2010, 188, 313-357.	7.7	194
21	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS. Astrophysical Journal, 2017, 834, 142.	4.5	193
22	STAR FORMATION RELATIONS IN NEARBY MOLECULAR CLOUDS. Astrophysical Journal, 2014, 782, 114.	4.5	174
23	A CS J  = 5 → 4 Mapping Survey Toward Highâ€Mass Starâ€forming Cores Associated with Wa Astrophysical Journal, Supplement Series, 2003, 149, 375-403.	ter Maser 7.7	^S ·171
24	Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam 1.1 mm Dust Continuum Surveys of Serpens, Perseus, and Ophiuchus. Astrophysical Journal, 2007, 666, 982-1001.	4.5	153
25	EVOLUTIONARY SIGNATURES IN THE FORMATION OF LOW-MASS PROTOSTARS. II. TOWARD RECONCILING MODELS AND OBSERVATIONS. Astrophysical Journal, 2010, 710, 470-502.	4.5	152
26	MASS MEASUREMENTS IN PROTOPLANETARY DISKS FROM HYDROGEN DEUTERIDE. Astrophysical Journal, 2016, 831, 167.	4.5	151
27	Evolution of Chemistry and Molecular Line Profiles during Protostellar Collapse. Astrophysical Journal, 2004, 617, 360-383.	4.5	150
28	New Protostellar Collapse Candidates: An HCO+Survey of the Class 0 Sources. Astrophysical Journal, 1997, 484, 256-276.	4.5	149
29	A "Starless―Core that Isn't: Detection of a Source in the L1014 Dense Core with the Spitzer Space Telescope. Astrophysical Journal, Supplement Series, 2004, 154, 396-401.	7.7	146
30	Tracing the Mass during Lowâ€Mass Star Formation. III. Models of the Submillimeter Dust Continuum Emission from Class O Protostars. Astrophysical Journal, 2002, 575, 337-353.	4.5	141
31	A New Look at Stellar Outflows: Spitzer Observations of the HH 46/47 System. Astrophysical Journal, Supplement Series, 2004, 154, 352-358.	7.7	134
32	The Spitzer c2d Survey of Nearby Dense Cores. II. Discovery of a Low-Luminosity Object in the "Evolved Starless Core" L1521F. Astrophysical Journal, 2006, 649, L37-L40.	4.5	132
33	THE GOULD'S BELT DISTANCES SURVEY (GOBELINS). I. TRIGONOMETRIC PARALLAX DISTANCES AND DEPTH (THE OPHIUCHUS COMPLEX. Astrophysical Journal, 2017, 834, 141.	OF 4.5	127
34	Modeling Line Profiles of Protostellar Collapse in B335 with the Monte Carlo Method. Astrophysical Journal, 1995, 448, 742.	4.5	126
35	THE BOLOCAM GALACTIC PLANE SURVEY. IX. DATA RELEASE 2 AND OUTER GALAXY EXTENSION. Astrophysical Journal, Supplement Series, 2013, 208, 14.	7.7	123
36	Evolutionary Signatures in the Formation of Lowâ€Mass Protostars. Astrophysical Journal, 2005, 627, 293-309.	4.5	115

#	Article	IF	CITATIONS
37	THE BOLOCAM GALACTIC PLANE SURVEY. VII. CHARACTERIZING THE PROPERTIES OF MASSIVE STAR-FORMING REGIONS. Astrophysical Journal, 2011, 741, 110.	4.5	108
38	Tracing the Mass during Lowâ€Mass Star Formation. IV. Observations and Modeling of the Submillimeter Continuum Emission from Class I Protostars. Astrophysical Journal, Supplement Series, 2003, 145, 111-145.	7.7	104
39	EMBEDDED PROTOSTARS IN THE DUST, ICE, AND GAS IN TIME (DIGIT) <i>HERSCHEL</i> KEY PROGRAM: CONTINUUM SEDs, AND AN INVENTORY OF CHARACTERISTIC FAR-INFRARED LINES FROM PACS SPECTROSCOPY. Astrophysical Journal, 2013, 770, 123.	4.5	102
40	TheSpitzerc2d Survey of Nearby Dense Cores. I. First Direct Detection of the Embedded Source in IRAM 04191+1522. Astrophysical Journal, 2006, 651, 945-959.	4.5	92
41	Chemistry and Dynamics in Preâ€protostellar Cores. Astrophysical Journal, 2003, 583, 789-808.	4.5	90
42	THE LUMINOSITIES OF PROTOSTARS IN THE <i>SPITZER</i> c2d AND GOULD BELT LEGACY CLOUDS. Astronomical Journal, 2013, 145, 94.	4.7	88
43	Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. II. Ophiuchus. Astrophysical Journal, 2006, 644, 326-343.	4.5	83
44	Indications of Inflow Motions in Regions Forming Massive Stars. Astrophysical Journal, 2003, 592, L79-L82.	4.5	82
45	Probing Preâ€Protostellar Cores with Formaldehyde. Astrophysical Journal, 2004, 614, 252-266.	4.5	80
46	Modeling the Physical Structure of the Lowâ€Density Preâ€Protostellar Core Lynds 1498. Astrophysical Journal, 2005, 632, 982-1000.	4.5	80
47	The Gould's Belt Distances Survey (GOBELINS). IV. Distance, Depth, and Kinematics of the Taurus Star-forming Region. Astrophysical Journal, 2018, 859, 33.	4.5	80
48	STAR FORMATION RELATIONS IN THE MILKY WAY. Astrophysical Journal, 2016, 831, 73.	4.5	79
49	THE BOLOCAM GALACTIC PLANE SURVEY. XIV. PHYSICAL PROPERTIES OF MASSIVE STARLESS AND STAR-FORMING CLUMPS. Astrophysical Journal, 2016, 822, 59.	4.5	75
50	PROBING PLANET FORMING ZONES WITH RARE CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 822, 53.	4.5	70
51	THE BOLOCAM GALACTIC PLANE SURVEY. V. HCO ⁺ AND N ₂ H ⁺ SPECTROSCOPY OF 1.1 mm DUST CONTINUUM SOURCES. Astrophysical Journal, Supplement Series, 2011, 195, 14.	7.7	66
52	THE <i>SPITZER</i> SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS. Astrophysical Journal, Supplement Series, 2011, 194, 43.	7.7	64
53	Testing star formation theories - VLA observations of H2CO in the BOK globule B335. Astrophysical Journal, 1990, 363, 168.	4.5	64
54	A CS survey of low-mass cores and comparison with NH3 observations. Astrophysical Journal, 1989, 346, 168.	4.5	62

#	Article	IF	CITATIONS
55	B335: A Laboratory for Astrochemistry in a Collapsing Cloud. Astrophysical Journal, 2005, 626, 919-932.	4.5	61
56	OBSERVATIONAL CONSTRAINTS ON SUBMILLIMETER DUST OPACITY. Astrophysical Journal, 2011, 728, 143.	4.5	60
57	DETECTION OF INFALL IN THE PROTOSTAR B335 WITH ALMA. Astrophysical Journal, 2015, 814, 22.	4.5	60
58	TheSpitzerc2d Survey of Nearby Dense Cores. IV. Revealing the Embedded Cluster in B59. Astrophysical Journal, 2007, 655, 364-374.	4.5	58
59	A Holistic Perspective on the Dynamics of G035.39-00.33: The Interplay between Gas and Magnetic Fields. Astrophysical Journal, 2018, 859, 151.	4.5	57
60	THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD. Astrophysical Journal, 2010, 717, 1157-1180.	4.5	56
61	The Herschel-PACS Legacy of Low-mass Protostars: The Properties of Warm and Hot Gas Components and Their Origin in Far-UV Illuminated Shocks. Astrophysical Journal, Supplement Series, 2018, 235, 30.	7.7	50
62	The TOP-SCOPE Survey of <i>Planck</i> Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17. Astrophysical Journal, Supplement Series, 2018, 234, 28.	7.7	50
63	THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD. Astrophysical Journal, 2013, 770, 39.	4.5	49
64	Organic chemistry in the innermost, infalling envelope of the Class 0 protostar L483. Astronomy and Astrophysics, 2019, 629, A29.	5.1	49
65	CO ₂ ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY. Astrophysical Journal, 2012, 758, 38.	4.5	48
66	Does Infall End before the Class I Stage?. Astrophysical Journal, 2000, 533, 440-453.	4.5	48
67	THE <i>>SPITZER</i> >c2d SURVEY OF NEARBY DENSE CORES. V. DISCOVERY OF A VeLLO IN THE "STARLESS― DENSE CORE L328. Astrophysical Journal, 2009, 693, 1290-1299.	4.5	45
68	THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH (sup) 13 (/sup) CO(1-0). Astrophysical Journal, 2015, 799, 29.	4.5	45
69	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – I. Survey description and a first look at G9.62+0.19. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2790-2820.	4.4	45
70	Berkeleyâ€Illinoisâ€Maryland Association Survey of Protostellar Collapse Candidates in HCO + and HCN Lines. Astrophysical Journal, Supplement Series, 1999, 122, 519-556.	7.7	44
71	SHARC-II Mapping of Spitzerc 2d Small Clouds and Cores. Astronomical Journal, 2007, 133, 1560-1584.	4.7	43
72	THE <i>SPITZER</i> c2d SURVEY OF NEARBY DENSE CORES. IX. DISCOVERY OF A VERY LOW LUMINOSITY OBJECT DRIVING A MOLECULAR OUTFLOW IN THE DENSE CORE L673-7. Astrophysical Journal, 2010, 721, 995-1013.	4.5	41

#	Article	IF	CITATIONS
73	THE GOULD BELT "MISFITS―SURVEY: THE REAL SOLAR NEIGHBORHOOD PROTOSTARS. Astrophysical Journal, 2015, 806, 231.	4.5	39
74	What Sets the Massive Star Formation Rates and Efficiencies of Giant Molecular Clouds?. Astrophysical Journal, 2017, 841, 109.	4.5	38
75	Magnetic Fields in the Infrared Dark Cloud G34.43+0.24. Astrophysical Journal, 2019, 883, 95.	4.5	38
76	Disk Masses around Solar-mass Stars are Underestimated by CO Observations. Astrophysical Journal, 2017, 841, 39.	4.5	37
77	THE VIRUS-P EXPLORATION OF NEARBY GALAXIES (VENGA): THE <i>X</i> _{CO} GRADIENT IN NGC 628. Astrophysical Journal, 2013, 764, 117.	4.5	36
78	A MID-INFRARED CENSUS OF STAR FORMATION ACTIVITY IN BOLOCAM GALACTIC PLANE SURVEY SOURCES. Astrophysical Journal, 2011, 731, 90.	4.5	34
79	Formation of wide binaries by turbulent fragmentation. Nature Astronomy, 2017, 1, .	10.1	34
80	Models of molecular cloud cores. III - A mulitransition study of H2CO. Astrophysical Journal, 1987, 318, 392.	4.5	34
81	AN ANALYSIS OF THE ENVIRONMENTS OF FU ORIONIS OBJECTS WITH <i>HERSCHEL</i> Astrophysical Journal, 2013, 772, 117.	4.5	32
82	Star Formation Occurs in Dense Gas, but What Does "Dense―Mean?. Astrophysical Journal, 2020, 894, 103.	4.5	30
83	High-mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties. Astrophysical Journal, Supplement Series, 2017, 231, 11.	7.7	28
84	THE <i>SPITZER</i> c2d SURVEY OF NEARBY DENSE CORES: JET AND MOLECULAR OUTFLOW ASSOCIATED WITH A YOUNG STELLAR OBJECT IN CORE A OF L1251. Astrophysical Journal Letters, 2010, 709, L74-L78.	8.3	27
85	THE <i>>SPITZER</i> C2D SURVEY OF NEARBY DENSE CORES. XI. INFRARED AND SUBMILLIMETER OBSERVATIONS OF CB130. Astrophysical Journal, 2011, 729, 84.	4.5	26
86	Submillimeter Common-User Bolometer Array Mapping of Spitzerc 2d Small Clouds and Cores. Astronomical Journal, 2006, 132, 1998-2013.	4.7	25
87	CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars ^{â^—} . Astrophysical Journal, 2018, 860, 174.	4.5	24
88	Molecular clouds in the outer Galaxy. IV - Studies of star formation. Astrophysical Journal, 1990, 354, 492.	4.5	24
89	TheSpitzerc2d Survey of Nearby Dense Cores. III. Lowâ€Mass Star Formation in a Small Group, L1251B. Astrophysical Journal, 2006, 648, 491-503.	4.5	23
90	THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 $\langle i \rangle \hat{l} \frac{1}{4} \langle j \rangle$ M OBSERVATIONS. Astrophysical Journal, Supplement Series, 2015, 218, 1.	7.7	23

#	Article	IF	CITATIONS
91	Constraining the Infalling Envelope Models of Embedded Protostars: BHR 71 and Its Hot Corino. Astrophysical Journal, 2020, 891, 61.	4.5	23
92	THE CDF ARCHIVE: HERSCHEL PACS AND SPIRE SPECTROSCOPIC DATA PIPELINE AND PRODUCTS FOR PROTOSTARS AND YOUNG STELLAR OBJECTS. Astronomical Journal, 2016, 151, 75.	4.7	22
93	The Class O Protostar BHR71: Herschel Observations and Dust Continuum Models. Astrophysical Journal, 2017, 835, 259.	4.5	22
94	Planck Cold Clumps in the $\langle i \rangle \hat{l} \times \langle i \rangle$ Orionis Complex. II. Environmental Effects on Core Formation. Astrophysical Journal, Supplement Series, 2018, 236, 51.	7.7	22
95	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows. Astrophysical Journal, Supplement Series, 2020, 251, 20.	7.7	22
96	TESTING 24 $\hat{l}\frac{1}{4}$ m AND INFRARED LUMINOSITY AS STAR FORMATION TRACERS FOR GALACTIC STAR-FORMING REGIONS. Astrophysical Journal, 2013, 765, 129.	4.5	20
97	ATOMS: ALMA three-millimeter observations of massive star-forming regions – II. Compact objects in ACA observations and star formation scaling relations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2821-2835.	4.4	20
98	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – XI. From inflow to infall in hub-filament systems. Monthly Notices of the Royal Astronomical Society, 2022, 514, 6038-6052.	4.4	19
99	THE EVOLUTION OF FAR-INFRARED CO EMISSION FROM PROTOSTARS. Astrophysical Journal, 2016, 831, 69.	4.5	18
100	Neutral winds from protostars. Astrophysical Journal, 1992, 397, 214.	4.5	18
101	Which Molecular Cloud Structures Are Bound?. Astrophysical Journal, 2021, 920, 126.	4.5	17
102	ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – IX. A pilot study towards IRDC G034.43+00.24 on multi-scale structures and gas kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4480-4489.	4.4	17
103	THE BOLOCAM GALACTIC PLANE SURVEY. XIII. PHYSICAL PROPERTIES AND MASS FUNCTIONS OF DENSE MOLECULAR CLOUD STRUCTURES. Astrophysical Journal, 2015, 805, 157.	4.5	16
104	EVIDENCE FOR DECAY OF TURBULENCE BY MHD SHOCKS IN THE ISM VIA CO EMISSION. Astrophysical Journal, 2015, 806, 70.	4.5	16
105	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of Extremely High-density Compact Structure of Prestellar Cores and Multiple Substructures Within. Astrophysical Journal Letters, 2021, 907, L15.	8.3	16
106	Molecular Cloud Cores with a High Deuterium Fraction: Nobeyama Single-pointing Survey. Astrophysical Journal, Supplement Series, 2020, 249, 33.	7.7	15
107	THE <i>SPITZER</i> c2d SURVEY OF NEARBY DENSE CORES. VII. CHEMISTRY AND DYNAMICS IN L43. Astrophysical Journal, 2009, 705, 1160-1172.	4.5	14
108	L1448-MM OBSERVATIONS BY THE <i>HERSCHEL</i> KEY PROGRAM, "DUST, ICE, AND GAS IN TIME―(DIGIT). Astrophysical Journal, Supplement Series, 2013, 209, 4.	· 7.7	14

#	Article	IF	CITATIONS
109	Large-scale Molecular Gas Distribution in the M17 Cloud Complex: Dense Gas Conditions of Massive Star Formation?. Astrophysical Journal, 2020, 891, 66.	4.5	14
110	The Effects of Protostellar Disk Turbulence on CO Emission Lines: A Comparison Study of Disks with Constant CO Abundance versus Chemically Evolving Disks. Astrophysical Journal, 2017, 850, 169.	4.5	13
111	Ionization-driven Depletion and Redistribution of CO in Protoplanetary Disks. Astrophysical Journal Letters, 2018, 868, L37.	8.3	13
112	ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines. Astrophysical Journal, 2020, 895, 119.	4. 5	13
113	Slow Star Formation in the Milky Way: Theory Meets Observations. Astrophysical Journal Letters, 2022, 929, L18.	8.3	13
114	<i>HERSCHEL</i> KEY PROGRAM, "DUST, ICE, AND GAS IN TIME―(DIGIT): THE ORIGIN OF MOLECULAR AND ATOMIC EMISSION IN LOW-MASS PROTOSTARS IN TAURUS. Astrophysical Journal, Supplement Series, 2014, 214, 21.	7.7	12
115	THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION. Astrophysical Journal, Supplement Series, 2016, 225, 21.	7.7	12
116	Precessing Jet and Large Dust Grains in the V380 Ori NE Star-forming Region. Astrophysical Journal, Supplement Series, 2017, 232, 24.	7.7	11
117	THE MID-INFRARED EVOLUTION OF THE FU ORIONIS DISK. Astrophysical Journal, 2016, 832, 4.	4.5	10
118	"DUST, ICE, AND GAS IN TIME―(DIGIT) <i>HERSCHEL</i> OBSERVATIONS OF GSS30-IRS1 IN OPHIUCHUS. Astrophysical Journal, Supplement Series, 2015, 217, 6.	7.7	9
119	THE <i>>SPITZER</i> c2d SURVEY OF NEARBY DENSE CORES. X. STAR FORMATION IN L673 AND CB188. Astrophysical Journal, 2010, 725, 2461-2479.	4.5	8
120	Ices in Starless and Starforming Cores. Proceedings of the International Astronomical Union, 2011, 7, 65-78.	0.0	8
121	A CATALOG OF LOW-MASS STAR-FORMING CORES OBSERVED WITH SHARC-II AT 350 νm. Astronomical Journal, 2016, 152, 36.	4.7	8
122	Inflow Motions Associated with High-mass Protostellar Objects. Astrophysical Journal, Supplement Series, 2018, 235, 31.	7.7	8
123	THE STAR-FORMATION RELATION FOR REGIONS IN THE GALACTIC PLANE: THE EFFECT OF SPATIAL RESOLUTION. Astrophysical Journal, 2014, 797, 77.	4.5	7
124	THE <i>>SPITZER</i> >c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221. Astrophysical Journal, 2009, 702, 340-351.	4. 5	6
125	INFRARED AND RADIO OBSERVATIONS OF A SMALL GROUP OF PROTOSTELLAR OBJECTS IN THE MOLECULAR CORE, L1251-C. Astrophysical Journal, Supplement Series, 2015, 218, 5.	7.7	6
126	TIMES. I. A Systematic Observation in Multiple Molecular Lines toward the Orion A and Ophiuchus Clouds. Astrophysical Journal, Supplement Series, 2021, 256, 16.	7.7	6

#	Article	IF	CITATIONS
127	ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Evidence for a Molecular Jet Launched at an Unprecedented Early Phase of Protostellar Evolution. Astrophysical Journal, 2022, 931, 130.	4.5	6
128	Cloud structures in MÂ17 SWex : Possible cloud–cloud collision. Publication of the Astronomical Society of Japan, 2021, 73, S300-S320.	2.5	5
129	Molecular Cloud Cores with High Deuterium Fractions: Nobeyama Mapping Survey. Astrophysical Journal, Supplement Series, 2021, 256, 25.	7.7	5
130	Turbulent Properties in Star-forming Molecular Clouds Down to the Sonic Scale. II. Investigating the Relation between Turbulence and Star-forming Environments in Molecular Clouds. Astrophysical Journal, 2021, 921, 31.	4.5	4
131	Planck Galactic Cold Clumps at High Galactic Latitude—a Study with CO Lines. Astrophysical Journal, 2021, 920, 103.	4.5	4
132	Atomic Shocks in the Outflow of L1551 IRS 5 Identified with SOFIA-upGREAT Observations of [O i]. Astrophysical Journal, 2022, 925, 93.	4.5	4
133	Astrochemistry Results from the Spitzer c2d Project. Proceedings of the International Astronomical Union, 2005, 1, 321.	0.0	3
134	Nobeyama Survey of Inward Motions toward Cores in Orion Identified by SCUBA-2. Astrophysical Journal, 2022, 931, 33.	4. 5	2
135	Solid CH ₄ toward low-mass protostars: How much is there to build complex organics?. Proceedings of the International Astronomical Union, 2008, 4, 127-128.	0.0	1
136	Low-mass Star Formation: Observations. Proceedings of the International Astronomical Union, 2010, 6, 25-32.	0.0	1
137	Star formation in three nearby cloud complexes. Symposium - International Astronomical Union, 1991, 147, 293-315.	0.1	1
138	Star formation in three nearby cloud complexes. Symposium - International Astronomical Union, 1991, 147, 293-315.	0.1	0
139	Infrared Molecular Spectroscopy of Orion. Symposium - International Astronomical Union, 1992, 150, 265-269.	0.1	0
140	Summary Talk I–Natal molecular clouds: Summary and perspectives. Proceedings of the International Astronomical Union, 2005, 1, 443-448.	0.0	0
141	Modeling the dust and gas temperatures near young stars. Proceedings of the International Astronomical Union, 2006, 2, 481-481.	0.0	0
142	The Real Solar Neighborhood Protostars. Proceedings of the International Astronomical Union, 2015, 11, .	0.0	0
143	Direct Infall Signatures and Complex Organic Molecules toward an Isolated Embedded Protostar BHR 71. Proceedings of the International Astronomical Union, 2018, 14, 312-313.	0.0	0
144	The dense galactic environments of the Milky Way. Proceedings of the International Astronomical Union, 2018, 14, 34-38.	0.0	0