
Shu-Miaw Chaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377863/publications.pdf Version: 2024-02-01

<u> Сни-Мілли Снлли</u>

#	Article	IF	CITATIONS
1	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
2	Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Molecular Biology and Evolution, 2021, 38, 4149-4165.	3.5	12
3	Tight association of genome rearrangements with gene expression in conifer plastomes. BMC Plant Biology, 2021, 21, 33.	1.6	5
4	Genetic Differentiation and Demographic Trajectory of the Insular Formosan and Orii's Flying Foxes. Journal of Heredity, 2021, 112, 192-203.	1.0	1
5	Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data. Frontiers in Plant Science, 2021, 12, 713216.	1.7	5
6	Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses. Scientific Reports, 2020, 10, 20650.	1.6	2
7	The origin and underlying driving forces of the SARS-CoV-2 outbreak. Journal of Biomedical Science, 2020, 27, 73.	2.6	82
8	The Origin and Evolution of Plastid Genome Downsizing in Southern Hemispheric Cypresses (Cupressaceae). Frontiers in Plant Science, 2020, 11, 901.	1.7	6
9	Two Independent Plastid accD Transfers to the Nuclear Genome of Gnetum and Other Insights on Acetyl-CoA Carboxylase Evolution in Gymnosperms. Genome Biology and Evolution, 2019, 11, 1691-1705.	1.1	15
10	Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Scientific Reports, 2019, 9, 2773.	1.6	54
11	Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nature Plants, 2019, 5, 63-73.	4.7	124
12	Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. Molecular Phylogenetics and Evolution, 2019, 133, 24-32.	1.2	8
13	Evolution of Gymnosperm Plastid Genomes. Advances in Botanical Research, 2018, 85, 195-222.	0.5	25
14	Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Scientific Reports, 2017, 7, 41005.	1.6	45
15	Plastome Evolution in the Sole Hemiparasitic Genus Laurel Dodder (Cassytha) and Insights into the Plastid Phylogenomics of Lauraceae. Genome Biology and Evolution, 2017, 9, 2604-2614.	1.1	36
16	Insights into the Existence of Isomeric Plastomes in Cupressoideae (Cupressaceae). Genome Biology and Evolution, 2017, 9, 1110-1119.	1.1	53
17	Revisiting the Plastid Phylogenomics of Pinaceae with Two Complete Plastomes ofPseudolarixandTsuga. Genome Biology and Evolution, 2016, 8, 1804-1811.	1.1	14
18	Large-Scale Comparative Analysis Reveals the Mechanisms Driving Plastomic Compaction, Reduction, and Inversions in Conifers II (Cupressophytes). Genome Biology and Evolution, 2016, 8, evw278.	1.1	41

#	Article	IF	CITATIONS
19	Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine. Genome Biology and Evolution, 2016, 8, 1776-1784.	1.1	46
20	The complete plastome sequence of Gnetum ula (Gnetales: Gnetaceae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3721-3722.	0.7	3
21	Evolutionary Stasis in Cycad Plastomes and the First Case of Plastome GC-Biased Gene Conversion. Genome Biology and Evolution, 2015, 7, 2000-2009.	1.1	73
22	Complete mitochondrial genome of an enigmatic dragonfly,Epiophlebia superstes(Odonata,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 622

23	Mitochondrial genome of a flashwing demoiselle,Vestalis melaniafrom the Philippine Archipelago. Mitochondrial DNA, 2015, 26, 720-721.	0.6	14
24	Highly rearranged and sizeâ€variable chloroplast genomes in conifers <scp>II</scp> clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnology Journal, 2014, 12, 344-353.	4.1	87
25	Ancient Nuclear Plastid DNA in the Yew Family (Taxaceae). Genome Biology and Evolution, 2014, 6, 2111-2121.	1.1	35
26	Chloroplast Phylogenomics Indicates that Ginkgo biloba Is Sister to Cycads. Genome Biology and Evolution, 2013, 5, 243-254.	1.1	59
27	The Complete Chloroplast Genome of Ginkgo biloba Reveals the Mechanism of Inverted Repeat Contraction. Genome Biology and Evolution, 2012, 4, 1201-1201.	1.1	3
28	Tangy Scent in Toona sinensis (Meliaceae) Leaflets: Isolation, Functional Characterization, and Regulation of TsTPS1 and TsTPS2, Two Key Terpene Synthase Genes in the Biosynthesis of the Scent Compound. Current Pharmaceutical Biotechnology, 2012, 13, 2721-2732.	0.9	11
29	The Complete Chloroplast Genome of Ginkgo biloba Reveals the Mechanism of Inverted Repeat Contraction. Genome Biology and Evolution, 2012, 4, 374-381.	1.1	96
30	Functional diversification of the Tubby-like protein gene families (TULPs) during eukaryotic evolution. Biocatalysis and Agricultural Biotechnology, 2012, 1, 2-8.	1.5	11
31	Loss of Different Inverted Repeat Copies from the Chloroplast Genomes of Pinaceae and Cupressophytes and Influence of Heterotachy on the Evaluation of Gymnosperm Phylogeny. Genome Biology and Evolution, 2011, 3, 1284-1295.	1.1	154
32	Vessel elements present in the secondary xylem of Trochodendron and Tetracentron (Trochodendraceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 595-600.	0.6	16
33	Comparative Chloroplast Genomes of Pinaceae: Insights into the Mechanism of Diversified Genomic Organizations. Genome Biology and Evolution, 2011, 3, 309-319.	1.1	114
34	Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes. Current Genetics, 2010, 56, 439-446.	0.8	19
35	Patterns of plant invasions in China: Taxonomic, biogeographic, climatic approaches and anthropogenic effects. Biological Invasions, 2010, 12, 2179-2206.	1.2	67
36	Bacterial community of very wet and acidic subalpine forest and fire-induced grassland soils. Plant and Soil, 2010, 332, 417-427.	1.8	9

Shu-Miaw Chaw

#	Article	IF	CITATIONS
37	Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. Genome Biology and Evolution, 2010, 2, 504-517.	1.1	162
38	Flower heating following anthesis and the evolution of gall midge pollination in Schisandraceae. American Journal of Botany, 2010, 97, 1220-1228.	0.8	25
39	Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: Selection toward a lower-cost strategy. Molecular Phylogenetics and Evolution, 2009, 52, 115-124.	1.2	151
40	Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology, 2008, 8, 36.	3.2	347
41	The Mitochondrial Genome of the Gymnosperm Cycas taitungensis Contains a Novel Family of Short Interspersed Elements, Bpu Sequences, and Abundant RNA Editing Sites. Molecular Biology and Evolution, 2008, 25, 603-615.	3.5	155
42	Chloroplast Genome (cpDNA) of Cycas taitungensis and 56 cp Protein-Coding Genes of Gnetum parvifolium: Insights into cpDNA Evolution and Phylogeny of Extant Seed Plants. Molecular Biology and Evolution, 2007, 24, 1366-1379.	3.5	121
43	Opposite Evolutionary Effects between Different Alternative Splicing Patterns. Molecular Biology and Evolution, 2007, 24, 1443-1446.	3.5	14
44	Transfer of Chloroplast Genomic DNA to Mitochondrial Genome Occurred At Least 300 MYA. Molecular Biology and Evolution, 2007, 24, 2040-2048.	3.5	105
45	Plant Gene and Alternatively Spliced Variant Annotator. A Plant Genome Annotation Pipeline for Rice Gene and Alternatively Spliced Variant Identification with Cross-Species Expressed Sequence Tag Conservation from Seven Plant Species. Plant Physiology, 2007, 143, 1086-1095.	2.3	24
46	The Chloroplast Genome of Phalaenopsis aphrodite (Orchidaceae): Comparative Analysis of Evolutionary Rate with that of Grasses and Its Phylogenetic Implications. Molecular Biology and Evolution, 2006, 23, 279-291.	3.5	301
47	A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution, 2005, 37, 214-234.	1.2	84
48	Plant invasions in Taiwan: Insights from the flora of casual and naturalized alien species. Diversity and Distributions, 2004, 10, 349-362.	1.9	64
49	Dating the Monocot?Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes. Journal of Molecular Evolution, 2004, 58, 424-441.	0.8	389
50	Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 479-484.	0.8	153
51	Phylogeny of Taxaceae and Cephalotaxaceae Genera Inferred from Chloroplast matK Gene and Nuclear rDNA ITS Region. Molecular Phylogenetics and Evolution, 2000, 14, 353-365.	1.2	84
52	A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1809-1816.	0.8	48
53	The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18s rRNA sequences. Journal of Molecular Evolution, 1995, 41, 224-30.	0.8	46