Davide Carboni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8377758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenyl-modified hybrid organic-inorganic microporous films as high efficient platforms for styrene sensing. Microporous and Mesoporous Materials, 2020, 294, 109877.	2.2	8
2	Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Applied Surface Science, 2018, 450, 451-460.	3.1	63
3	Selective detection of organophosphate through molecularly imprinted GERSâ€active hybrid organic–inorganic materials. Journal of Raman Spectroscopy, 2018, 49, 189-197.	1.2	10
4	Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing. Materials, 2018, 11, 1674.	1.3	16
5	Graphene and Carbon Dots in Mesoporous Materials. , 2018, , 2339-2368.		0
6	Mesoscale organization of titania thin films enables oxygen sensing at room temperature. Journal of Materials Chemistry C, 2017, 5, 11815-11823.	2.7	11
7	Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices. Scientific Reports, 2017, 7, 5469.	1.6	68
8	Greener Chemistry for Hybrid Materials, Alcoholâ€Free Synthesis with an Epoxyâ€Cyclohexyl Precursor. Macromolecular Materials and Engineering, 2017, 302, 1600394.	1.7	0
9	Thermoresponsive Wrinkles on Hydrogels for Soft Actuators. Advanced Materials Interfaces, 2016, 3, 1500802.	1.9	33
10	Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Advances, 2016, 6, 66516-66523.	1.7	30
11	Improving the Selective Efficiency of Graphene-Mediated Enhanced Raman Scattering through Molecular Imprinting. ACS Applied Materials & Interfaces, 2016, 8, 34098-34107.	4.0	18
12	Hard X-rays for processing hybrid organic–inorganic thick films. Journal of Synchrotron Radiation, 2016, 23, 267-273.	1.0	5
13	In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. Journal of Sol-Gel Science and Technology, 2016, 79, 295-302.	1.1	11
14	Magnetic core–shell nanoparticles coated with a molecularly imprinted organogel for organophosphate hydrolysis. Journal of Sol-Gel Science and Technology, 2016, 79, 395-404.	1.1	4
15	Graphene and Carbon Dots in Mesoporous Materials. , 2016, , 1-30.		0
16	Energy Transfer Induced by Carbon Quantum Dots in Porous Zinc Oxide Nanocomposite Films. Journal of Physical Chemistry C, 2015, 119, 2837-2843.	1.5	55
17	Introducing Ti-GERS: Raman Scattering Enhancement in Graphene-Mesoporous Titania Films. Journal of Physical Chemistry Letters, 2015, 6, 3149-3154.	2.1	15
18	Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. Nanoscale, 2015, 7, 12759-12772.	2.8	60

DAVIDE CARBONI

#	Article	IF	CITATIONS
19	Solâ€toâ€Gel Transition in Fast Evaporating Systems Observed by in Situ Timeâ€Resolved Infrared Spectroscopy. ChemPhysChem, 2015, 16, 1933-1939.	1.0	14
20	Getting order in mesostructured thin films, from pore organization to crystalline walls, the case of 3-glycidoxypropyltrimethoxysilane. Physical Chemistry Chemical Physics, 2015, 17, 10679-10686.	1.3	8
21	Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Physical Chemistry Chemical Physics, 2014, 16, 25809-25818.	1.3	32
22	Engineering the surface of hybrid organic–inorganic films with orthogonal grafting of oxide nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
23	Smart tailoring of the surface chemistry in GPTMS hybrid organic–inorganic films. New Journal of Chemistry, 2014, 38, 1635-1640.	1.4	21
24	Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. Journal of Physical Chemistry C, 2014, 118, 12000-12009.	1.5	22
25	Molecularly imprinted La-doped mesoporous titania films with hydrolytic properties toward organophosphate pesticides. New Journal of Chemistry, 2013, 37, 2995.	1.4	25
26	Pore-confined synthesis of mesoporous nanocrystalline La–Ce phosphate films for sensing applications. Journal of Materials Chemistry, 2012, 22, 20498.	6.7	9
27	Toward a Simulation Approach for Alkene Ring-closing Metathesis: Scope and Limitations of a Model for RCM. Journal of Organic Chemistry, 2011, 76, 8386-8393.	1.7	13
28	Microgels and Nanogels with Catalytic Activity. Topics in Current Chemistry, 2010, 325, 307-342.	4.0	19
29	On the relationship between structure and reaction rate in olefin ring-closing metathesis. Chemical Communications, 2010, 46, 7145.	2.2	14
30	The First Example of Molecularly Imprinted Nanogels with Aldolase Type I Activity. Chemistry - A European Journal, 2008, 14, 7059-7065.	1.7	72
31	Synthesis of indole derivatives by domino hydroformylation/indolization of 2-nitrocinnamaldehydes. Journal of Molecular Catalysis A, 2008, 288, 103-108.	4.8	5